Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.
more »
« less
Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology
- Award ID(s):
- 2027752
- PAR ID:
- 10224764
- Date Published:
- Journal Name:
- Environmental Research
- Volume:
- 193
- Issue:
- C
- ISSN:
- 0013-9351
- Page Range / eLocation ID:
- 110531
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Analysis of municipal wastewater, or sewage for public health applications is a rapidly expanding field aimed at understanding emerging epidemiological trends, including human and disease migration. The newly gained ability to extract and analyze genetic material from wastewater poses important societal and ethical questions, including: How to safeguard data? Who owns genetic data recovered from wastewater? What are the ethical and legal issues surrounding its use? In the U.S., both corporate and legal policies regarding privacy have been historically reactive instead of proactive. In wastewater-based epidemiology (WBE), the pace of innovation has outpaced the ability of social and legal mechanisms to keep up. To address this discrepancy, early and robust discussions of the research, policies, and ethics surrounding WBE analysis and genetics is needed. This paper contributes to this discussion by examining ownership issues for human genetic data recovered from wastewater and the uses to which it may be put. We focus particularly on the risks associated with personally identifiable data, highlighting potential risks, relevant privacy-enhancing technologies, and appropriate ethics. The paper proposes an approach for people conducting WBE studies to help them systematically consider the ethical and privacy implications of their work.more » « less
An official website of the United States government

