skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Woody Plant Encroachment and the Sustainability of Priority Conservation Areas
Woody encroachment is a global driver of grassland loss and management to counteract encroachment represents one of the most expensive conservation practices implemented in grasslands. Yet, outcomes of these practices are often unknown at large scales and this constrains practitioner’s ability to advance conservation. Here, we use new monitoring data to evaluate outcomes of grassland conservation on woody encroachment for Nebraska’s State Wildlife Action Plan, a statewide effort that targets management in Biologically Unique Landscapes (BULs) to conserve the state’s natural communities. We tracked woody cover trajectories for BULs and compared BUL trajectories with those in non-priority landscapes (non-BULs) to evaluate statewide and BUL-scale conservation outcomes more than a decade after BUL establishment. Statewide, woody cover increased by 256,653 ha (2.3%) from 2000–2017. Most BULs (71%) experienced unsustainable trends of grassland loss to woody encroachment; however, management appeared to significantly reduce BUL encroachment rates compared to non-BULs. Most BULs with early signs of encroachment lacked control strategies, while only one BUL with moderate levels of encroachment (Loess Canyons) showed evidence of a management-driven stabilization of encroachment. These results identify strategic opportunities for proactive management in grassland conservation and demonstrate how new monitoring technology can support large-scale adaptive management pursuits.  more » « less
Award ID(s):
1920938
PAR ID:
10224766
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
12
Issue:
20
ISSN:
2071-1050
Page Range / eLocation ID:
8321
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Animals must track resources over relatively fine spatial and temporal scales, particularly in disturbance‐mediated systems like grasslands. Grassland birds respond to habitat heterogeneity by dispersing among sites within and between years, yet we know little about how they make post‐dispersal settlement decisions. Many methods exist to quantify the resource selection of mobile taxa, but the habitat data used in these models are frequently not collected at the same location or time that individuals were present. This spatiotemporal misalignment may lead to incorrect interpretations and adverse conservation outcomes, particularly in dynamic systems. To investigate the extent to which spatially and temporally dynamic vegetation conditions and topography drive grassland bird settlement decisions, we integrated multiple data sources from our study site to predict slope, vegetation height, and multiple metrics of vegetation cover at any point in space and time within the temporal and spatial scope of our study. We paired these predictions with avian mark‐resight data for 8 years at the Konza Prairie Biological Station in NE Kansas to evaluate territory selection for Grasshopper Sparrows (Ammodramus savannarum), Dickcissels (Spiza americana), and Eastern Meadowlarks (Sturnella magna). Each species selected different types and amounts of herbaceous vegetation cover, but all three species preferred relatively flat areas with less than 6% shrub cover and less than 1% tree cover. We evaluated several scenarios of woody vegetation removal and found that, with a targeted approach, the simulated removal of just one isolated tree in the uplands created up to 14 ha of grassland bird habitat. This study supports growing evidence that small amounts of woody encroachment can fragment landscapes, augmenting conservation threats to grassland systems. Conversely, these results demonstrate that drastic increases in bird habitat area could be achieved through relatively efficient management interventions. The results and approaches reported pave the way for more efficient conservation efforts in grasslands and other systems through spatiotemporal alignment of habitat with animal behaviors and simulated impacts of management interventions. 
    more » « less
  2. Abstract Grasslands are among the most imperilled ecosystems worldwide, and many have experienced degradation due to the loss of historical disturbance regimes and subsequent woody encroachment. Management practitioners often use physical and chemical management interventions in combination with fire to counter encroachment, altering aboveground structure and belowground function, respectively. This may disrupt the feedbacks that perpetuate encroachment and restore the herbaceous community.We use a large‐scale field experiment to assess the initial effects of different management interventions on woody vegetation persistence, abiotic habitat conditions, and herbaceous community composition. We evaluate these effects across seven sites spanning a natural soil moisture gradient to capture one aspect of environmental heterogeneity with which managers regularly contend.We found that chemical intervention, both with and without the addition of physical intervention, was most effective at reducing woody plant cover and abundance, and a second application reduced woody plant abundance by more than one application alone. We also found that any management intervention increased light availability and air temperature and decreased soil moisture, with the combination of physical and chemical interventions having the greatest effects. Finally, none of the management interventions affected herbaceous richness and functional group cover within the study period, indicating delayed or nonexistent effects on herbaceous community composition.Synthesis and application. Our findings suggest that management should focus on chemical intervention for the greatest effects on woody plant persistence and abiotic habitat conditions. Changes to herbaceous community composition may occur in the long term and seem likely since short‐term effects of management were successful in altering processes related to encroachment feedbacks. 
    more » « less
  3. Abstract In this era of global environmental change and rapid regime shifts, managing core areas that species require to survive and persist is a grand challenge for conservation. Wildlife monitoring data are often limited or local in scale. The emerging ability to map and track spatial regimes (i.e., the spatial manifestation of state transitions) using advanced geospatial vegetation data has the potential to provide earlier warnings of habitat loss because many species of conservation concern strongly avoid spatial regime boundaries. Using 23 yr of data for the lek locations of Greater Prairie‐Chicken (Tympanuchus cupido; GPC) in a remnant grassland ecosystem, we demonstrate how mapping changes in the boundaries between grassland and woodland spatial regimes provide a spatially explicit early warning signal for habitat loss for an iconic and vulnerable grassland‐obligate known to be highly sensitive to woody plant encroachment. We tested whether a newly proposed metric for the quantification of spatial regimes captured well‐known responses of GPC to woody plant expansion into grasslands. Resource selection functions showed that the grass:woody spatial regime boundary strength explained the probability of 80% of relative lek occurrence, and GPC strongly avoided grass:woody spatial regime boundaries at broad scales. Both findings are consistent with well‐known expectations derived from GPC ecology. These results provide strong evidence for vegetation‐derived delineations of spatial regimes to serve as generalized signals of early warning for state transitions that have major consequences to biodiversity conservation. Mapping spatial regime boundaries over time provided interpretable early warnings of habitat loss. Woody plant regimes displaced grassland regimes starting from the edges of the study area and constricting inward. Correspondingly, the relative probability of lek occurrence constricted in space. Similarly, the temporal trajectory of spatial regime boundary strength increased over time and moved closer to the observed limit of GPC lek site usage relative to grass:woody boundary strength. These novel spatial metrics allow managers to rapidly screen for early warning signals of spatial regime shifts and adapt management practices to defend and grow habitat cores at broad scales. 
    more » « less
  4. Abstract In the Central Great Plains of North America, fire suppression is causing transitions from grasslands to shrublands and woodlands. This woody encroachment alters plant community composition, decreases grassland biodiversity, undermines key ecosystem services, and is difficult to reverse. How native grazers affect woody encroachment is largely unknown, especially compared to domesticated grazers. Bison were once the most widespread megafauna in North America and are typically categorized as grazers, with negative effects on grasses that indirectly benefit woody plants. However, bison can negatively impact woody plants through occasional browsing and mechanical disturbance. This study reports on a 30‐year experiment at Konza Prairie Biological Station, a mesic grassland in the Central Great Plains of North America, under fire suppression and experimental presence/absence of bison. Based on remote sensing, deciduous tree canopy cover was lower with bison (6% grazed vs. 16% ungrazed). Shrub land cover showed no difference (42% grazed vs. 41% ungrazed), while herbaceous land cover was higher with bison (51% grazed vs. 40% ungrazed). Evergreen tree canopy cover (Juniperus virginianaL.), which decreases biodiversity and increases wildfire risk, was approximately 0% with bison compared to 4% without bison. In the survival trial ofJ. virginianaseedlings, we found a 40% overwinter mortality with bison, compared to 5% mortality without bison. Compared to ungrazed areas, native plant species richness was 97% and 38% higher in bison‐grazed uplands and lowlands, respectively. Species evenness and Shannon's index were higher in the bison treatment in uplands, but not in lowlands. Bison affected community composition, resulting in higher cover of short grass species and lower tree cover. While grazers are generally assumed to favor woody plants, we found that bison had the opposite effect at low fire frequencies. We argue that the large size of bison and their behaviors account for this pattern, including trampling, horning, and occasional browsing. From a conservation perspective, bison might hamper tree expansion and increase plant diversity in tallgrass prairies and similar grasslands. 
    more » « less
  5. ABSTRACT Intermittent streams are prevalent worldwide, yet the understanding of drivers of their changing flow patterns remains incomplete. We examined hydrological changes spanning four decades (1982–2020) in Kings Creek, an intermittent grassland stream within the Konza Prairie Biological Station in Kansas, USA. We analysed streamflow data from a US Geological Survey gauge on Kings Creek and three upstream Long Term Ecological Reasearch (LTER) sub‐watersheds with annual, biennial or quadrennial burn frequencies and linked trajectories of woody encroachment to increased evapotranspiration and changes in streamflow. Riparian woody cover doubled in the annually and biannually burned sub‐watersheds and sevenfold in the quadrennially burned watersheds. We observed significant decreases (84%) in daily discharge and number of annual flow days (55%) at the downstream USGS Kings Creek gauge, with similar changes in the LTER sub‐watersheds. The changing riparian cover, propelled by the regional expansion of woody plants, contributed to decreased streamflow by amplifying actual evapotranspiration (ET). Seasonal assessments underscored the critical influence of late summer conditions (July–September), under which increases in ET were linked to rising temperatures and increased evapotranspiration by riparian cover. Our results highlight the significant hydrological impacts of woody encroachment in grasslands and emphasize the importance of long‐term ecohydrological monitoring in unravelling the interplay between climate and vegetation as controls on the hyper‐variable flow patterns in this intermittent stream. Predicting and managing hydrological impacts on the flow of intermittent grassland rivers and streams worldwide requires accounting for the effects of accelerating woody encroachment. 
    more » « less