- Award ID(s):
- 1632854
- NSF-PAR ID:
- 10224773
- Date Published:
- Journal Name:
- Environmental Science: Nano
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2051-8153
- Page Range / eLocation ID:
- 37 to 67
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Sustainable food production is a grand challenge facing the global economy. Traditional agricultural practice requires numerous interventions, such as application of nutrients and pesticides, of which only a fraction are utilized by the target crop plants. Controlled release systems (CRSs) designed for agriculture could improve targeting of agrochemicals, reducing costs and improving environmental sustainability. CRSs have been extensively used in biomedical applications to generate spatiotemporal release patterns of targeted compounds. Such systems protect encapsulant molecules from the external environment and off-target uptake, increasing their biodistribution and pharmacokinetic profiles. Advanced ‘smart’ release designs enable on-demand release in response to environmental cues, and theranostic systems combine sensing and release for real-time monitoring of therapeutic interventions. This review examines the history of biomedical CRSs, highlighting opportunities to translate biomedical designs to agricultural applications. Common encapsulants and targets of agricultural CRSs are discussed, as well as additional demands of these systems, such as need for high volume, low cost, environmentally friendly materials and manufacturing processes. Existing agricultural CRSs are reviewed, and opportunities in emerging systems, such as nanoparticle, ‘smart’ release, and theranostic formulations are highlighted. This review is designed to provide a guide to researchers in the biomedical controlled release field for translating their knowledge to agricultural applications, and to provide a brief introduction of biomedical CRSs to experts in soil ecology, microbiology, horticulture, and crop sciences.more » « less
-
Anaerobic digestion (AD), microalgae cultivation, and microbial fuel cells (MFCs) are the major biological processes to convert organic solid wastes and wastewater in the agricultural industry into biofuels, biopower, various biochemical and fertilizer products, and meanwhile, recycle water. Various nanomaterials including nano zero valent irons (nZVIs), metal oxide nanoparticles (NPs), carbon-based and multicompound nanomaterials have been studied to improve the economics and environmental sustainability of those biological processes by increasing their conversion efficiency and the quality of products, and minimizing the negative impacts of hazardous materials in the wastes. This review article presented the structures, functionalities and applications of various nanomaterials that have been studied to improve the performance of AD, microalgae cultivation, and MFCs for recycling and valorizing agricultural solid wastes and wastewater. The review also discussed the methods that have been studied to improve the performance of those nanomaterials for their applications in those biological processes.more » « less
-
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host–guest inclusion, metal–ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.more » « less
-
Abstract A major obstacle facing brain diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and strokes is the blood–brain barrier (BBB). The BBB prevents the passage of certain molecules and pathogens from the circulatory system into the brain. Therefore, it is nearly impossible for therapeutic drugs to target the diseased cells without the assistance of carriers. Nanotechnology is an area of growing public interest; nanocarriers, such as polymer‐based, lipid‐based, and inorganic‐based nanoparticles can be engineered in different sizes, shapes, and surface charges, and they can be modified with functional groups to enhance their penetration and targeting capabilities. Hence, understanding the interaction between nanomaterials and the BBB is crucial. In this Review, the components and properties of the BBB are revisited and the types of nanocarriers that are most commonly used for brain drug delivery are discussed. The properties of the nanocarriers and the factors that affect drug delivery across the BBB are elaborated upon in this review. Additionally, the most recent developments of nanoformulations and nonconventional drug delivery strategies are highlighted. Finally, challenges and considerations for the development of brain targeting nanomedicines are discussed. The overall objective is to broaden the understanding of the design and to develop nanomedicines for the treatment of brain diseases.
-
Phosphorus (P) loss from agro-ecosystems impinges upon P use efficiency by plants and thereby constitutes both agronomic and environmental nuisances. Herein, we report on the potential for controlling P leaching loss and application in crop fertilization through repurposing and nano-functionalizing tripolyphosphate (TPP) as a sole P source. The developed TPP-Chitosan and TPP-Chitosan-ZnO nanofertilizers exhibited positive surface charges, 5.8 and 13.8 mV, and hydrodynamic sizes of 430 and 301 nm, respectively. In soil, nanoformulations of TPP-Chitosan and TPP-Chitosan-ZnO significantly reduced cumulative P leaching during 72 h, reaching 91 and 97% reductions, respectively, compared to a conventional fertilizer, monoammonium phosphate (MAP). Cumulative P leaching after 72 h from these nanofertilizers was, respectively, 84 and 95% lower than from TPP alone. TPP-Chitosan-ZnO was, overall, 65% more effective in reducing P leaching, compared to TPP-Chitosan. Relative to MAP, the wheat plant height was significantly increased by TPP-Chitosan-ZnO by 33.0%. Compared to MAP, TPP-Chitosan and TPP-Chitosan-ZnO slightly increased wheat grain yield by 21 and 30%, respectively. Notably, TPP-Chitosan-ZnO significantly decreased shoot P levels, by 35.5, 47, and 45%, compared to MAP, TPP, and TPP-Chitosan, respectively. Zn release over 72 h from TPP-Chitosan-ZnO was considerably lower, compared to a control, ZnO nanoparticles, and averaged, respectively, 34.7 and 0.065 mg/L, which was 534 times higher for the former. Grain Zn was significantly higher in the TPP-Chitosan treatment, relative to MAP. TPP-Chitosan also significantly mobilized the resident K, S, Mg, and Ca from soil into the plant, helping to improve the overall nutritional quality and supporting the role of chitosan in nutrient mobilization. Taken together, our data highlight the potential for repurposing a non-fertilizer P material, TPP, for agricultural and environmental applications and the effect of applying nanotechnology on such outcomes. Broadly speaking, the reduction in P loss is critical for controlling the eutrophication of water bodies due to nutrient overload and for sustaining the dwindling global P resources.more » « less