skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preference Modeling with Context-Dependent Salient Features
We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US.  more » « less
Award ID(s):
1845076
PAR ID:
10224892
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 37th International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US. 
    more » « less
  2. null (Ed.)
    We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US. 
    more » « less
  3. In this paper, we propose a listwise approach for constructing user-specific rankings in recommendation systems in a collaborative fashion. We contrast the listwise approach to previous pointwise and pairwise approaches, which are based on treating either each rating or each pairwise comparison as an independent instance respectively. By extending the work of (Cao et al. 2007), we cast listwise collaborative ranking as maximum likelihood under a permutation model which applies probability mass to permutations based on a low rank latent score matrix. We present a novel algorithm called SQL-Rank, which can accommodate ties and missing data and can run in linear time. We develop a theoretical framework for analyzing listwise ranking methods based on a novel representation theory for the permutation model. Applying this framework to collaborative ranking, we derive asymptotic statistical rates as the number of users and items grow together. We conclude by demonstrating that our SQL-Rank method often outperforms current state-of-the-art algorithms for implicit feedback such as Weighted-MF and BPR and achieve favorable results when compared to explicit feedback algorithms such as matrix factorization and collaborative ranking. 
    more » « less
  4. In this paper, we consider the Collaborative Ranking (CR) problem for recommendation systems. Given a set of pairwise preferences between items for each user, collaborative ranking can be used to rank un-rated items for each user, and this ranking can be naturally used for recommendation. It is observed that collaborative ranking algorithms usually achieve better performance since they directly minimize the ranking loss; however, they are rarely used in practice due to the poor scalability. All the existing CR algorithms have time complexity at least O(|Ω|r) per iteration, where r is the target rank and |Ω| is number of pairs which grows quadratically with number of ratings per user. For example, the Netflix data contains totally 20 billion rating pairs, and at this scale all the current algorithms have to work with significant subsampling, resulting in poor prediction on testing data. In this paper, we propose a new collaborative ranking algorithm called Primal-CR that reduces the time complexity toO(|Ω|+d1d2r), where d1 is number of users and d2 is the averaged number of items rated by a user. Note that d1, d2 is strictly smaller and open much smaller than |Ω|. Furthermore, by exploiting the fact that most data is in the form of numerical ratings instead of pairwise comparisons, we propose Primal-CR++ with O(d1d2(r + log d2)) time complexity. Both algorithms have better theoretical time complexity than existing approaches and also outperform existing approaches in terms of NDCG and pairwise error on real data sets. To the best of our knowledge, this is the first collaborative ranking algorithm capable of working on the full Netflix dataset using all the 20 billion rating pairs, and this leads to a model with much better recommendation compared with previous models trained on subsamples. Finally, compared with classical matrix factorization algorithm which also requires O(d1 d2r) time, our algorithm has almost the same efficiency while making much better recommendations since we consider the ranking loss. 
    more » « less
  5. A number of applications require two-sample testing on ranked preference data. For instance, in crowdsourcing, there is a long-standing question of whether pairwise comparison data provided by people is distributed similar to ratings-converted-to-comparisons. Other examples include sports data analysis and peer grading. In this paper, we design two-sample tests for pairwise comparison data and ranking data. For our two-sample test for pairwise comparison data, we establish an upper bound on the sample complexity required to correctly distinguish between the distributions of the two sets of samples. Our test requires essentially no assumptions on the distributions. We then prove complementary lower bounds showing that our results are tight (in the minimax sense) up to constant factors. We investigate the role of modeling assumptions by proving lower bounds for a range of pairwise comparison models (WST, MST, SST, parameter-based such as BTL and Thurstone). We also provide testing algorithms and associated sample complexity bounds for the problem of two-sample testing with partial (or total) ranking data. Furthermore, we empirically evaluate our results via extensive simulations as well as two real-world datasets consisting of pairwise comparisons. By applying our two-sample test on real-world pairwise comparison data, we conclude that ratings and rankings provided by people are indeed distributed differently. On the other hand, our test recognizes no significant difference in the relative performance of European football teams across two seasons. Finally, we apply our two-sample test on a real-world partial and total ranking dataset and find a statistically significant difference in Sushi preferences across demographic divisions based on gender, age and region of residence. 
    more » « less