skip to main content


Title: Preference Modeling with Context-Dependent Salient Features
We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US.  more » « less
Award ID(s):
1845076
NSF-PAR ID:
10224892
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 37th International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US. 
    more » « less
  2. null (Ed.)
    We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US. 
    more » « less
  3. In this paper, we propose a listwise approach for constructing user-specific rankings in recommendation systems in a collaborative fashion. We contrast the listwise approach to previous pointwise and pairwise approaches, which are based on treating either each rating or each pairwise comparison as an independent instance respectively. By extending the work of (Cao et al. 2007), we cast listwise collaborative ranking as maximum likelihood under a permutation model which applies probability mass to permutations based on a low rank latent score matrix. We present a novel algorithm called SQL-Rank, which can accommodate ties and missing data and can run in linear time. We develop a theoretical framework for analyzing listwise ranking methods based on a novel representation theory for the permutation model. Applying this framework to collaborative ranking, we derive asymptotic statistical rates as the number of users and items grow together. We conclude by demonstrating that our SQL-Rank method often outperforms current state-of-the-art algorithms for implicit feedback such as Weighted-MF and BPR and achieve favorable results when compared to explicit feedback algorithms such as matrix factorization and collaborative ranking. 
    more » « less
  4. In this paper, we consider the Collaborative Ranking (CR) problem for recommendation systems. Given a set of pairwise preferences between items for each user, collaborative ranking can be used to rank un-rated items for each user, and this ranking can be naturally used for recommendation. It is observed that collaborative ranking algorithms usually achieve better performance since they directly minimize the ranking loss; however, they are rarely used in practice due to the poor scalability. All the existing CR algorithms have time complexity at least O(|Ω|r) per iteration, where r is the target rank and |Ω| is number of pairs which grows quadratically with number of ratings per user. For example, the Netflix data contains totally 20 billion rating pairs, and at this scale all the current algorithms have to work with significant subsampling, resulting in poor prediction on testing data. In this paper, we propose a new collaborative ranking algorithm called Primal-CR that reduces the time complexity toO(|Ω|+d1d2r), where d1 is number of users and d2 is the averaged number of items rated by a user. Note that d1, d2 is strictly smaller and open much smaller than |Ω|. Furthermore, by exploiting the fact that most data is in the form of numerical ratings instead of pairwise comparisons, we propose Primal-CR++ with O(d1d2(r + log d2)) time complexity. Both algorithms have better theoretical time complexity than existing approaches and also outperform existing approaches in terms of NDCG and pairwise error on real data sets. To the best of our knowledge, this is the first collaborative ranking algorithm capable of working on the full Netflix dataset using all the 20 billion rating pairs, and this leads to a model with much better recommendation compared with previous models trained on subsamples. Finally, compared with classical matrix factorization algorithm which also requires O(d1 d2r) time, our algorithm has almost the same efficiency while making much better recommendations since we consider the ranking loss. 
    more » « less
  5. A sequential design problem for rank aggregation is commonly encountered in psychology, politics, marketing, sports, etc. In this problem, a decision maker is responsible for ranking K items by sequentially collecting noisy pairwise comparisons from judges. The decision maker needs to choose a pair of items for comparison in each step, decide when to stop data collection, and make a final decision after stopping based on a sequential flow of information. Because of the complex ranking structure, existing sequential analysis methods are not suitable. In this paper, we formulate the problem under a Bayesian decision framework and propose sequential procedures that are asymptotically optimal. These procedures achieve asymptotic optimality by seeking a balance between exploration (i.e., finding the most indistinguishable pair of items) and exploitation (i.e., comparing the most indistinguishable pair based on the current information). New analytical tools are developed for proving the asymptotic results, combining advanced change of measure techniques for handling the level crossing of likelihood ratios and classic large deviation results for martingales, which are of separate theoretical interest in solving complex sequential design problems. A mirror-descent algorithm is developed for the computation of the proposed sequential procedures. 
    more » « less