skip to main content


Title: Multifactor theoretical modeling of solar thermal fuels built on azobenzene and norbornadiene scaffolds
Solar thermal fuels (STFs) offer a unique way of harnessing energy from the sun by absorbing photons and storing the energy in a metastable photoisomerized state. The reverse isomerization process can then be catalytically or thermally triggered to release the stored energy and return the fuel to its stable configuration. Functionalization of these compounds is necessary to reach practical energy storage densities, but substitutions that increase the energy storage density may adversely impact performance at other steps along the fuel cycle. Recent computational screening efforts to identify high-performance STF candidates have focused on properties that can be estimated from ground-state electronic structure methods. Here we argue that computational screening of STF candidates across the full fuel cycle benefits from a multifactor approach with excited-state properties like excitation energies and photoisomerization quantum yields addressed alongside key ground-state properties like energy storage densities and reverse isomerization barriers. As a critical step toward multifactor high-throughput screening and optimization of STFs, in this work we first systematically simulate the specific storage energy and excitation energy of substituted azobenzene- and norbornadiene-based STFs through electronic structure calculations. Density-functional tight-binding (DFTB) predictions are benchmarked against density functional theory (DFT) and experimental measurements where available. To encompass the complete solar thermal fuel cycle in these compounds, we then apply DFT methods to analyze the reverse isomerization process and its relationship to the photoisomerization quantum yield. We find that DFTB provides a useful balance between accuracy and computational efficiency for virtual screening of STF photoabsorption and energy storage, while isomerization barrier and quantum yield predictions require more sophisticated approaches.  more » « less
Award ID(s):
1664674
PAR ID:
10225098
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sustainable Energy & Fuels
Volume:
5
Issue:
8
ISSN:
2398-4902
Page Range / eLocation ID:
2335 to 2346
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Azobenezene compounds are putative solar thermal fuels (STF) due to excellent photostability and structural control of isomerization rates.  Azobenzenes in which both Z‐ and E‐isomers are liquid at room temperature are promising candidates for STF flow technology.  A literature survey of melting points led to the synthesis and isomer separation of ortho‐ and meta‐substituted, monofunctional azobenzenes with fluoro, methyl, ethyl, trifluoromethyl and methoxy substituents.  Four of the compounds are liquid azobenzenes with higher energy density than literature work with higher molar mass, liquid compounds.  Eight of the compounds unexpectedly displayed a higher melting point for the Z‐isomer which is rarely observed.  The higher‐melting behavior is explained, in part, by intermolecular close contacts in the Z‐isomer packing lattice.

     
    more » « less
  2. Abstract

    Confinement‐imposed photophysics was probed for novel stimuli‐responsive hydrazone‐based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution‐like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady‐state and time‐resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone‐based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.

     
    more » « less
  3. Abstract

    Confinement‐imposed photophysics was probed for novel stimuli‐responsive hydrazone‐based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution‐like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady‐state and time‐resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone‐based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.

     
    more » « less
  4. null (Ed.)
    Rotation around a specific bond after photoexcitation is central to vision and emerging opportunities in optogenetics, super-resolution microscopy, and photoactive molecular devices. Competing roles for steric and electrostatic effects that govern bond-specific photoisomerization have been widely discussed, the latter originating from chromophore charge transfer upon excitation. We systematically altered the electrostatic properties of the green fluorescent protein chromophore in a photoswitchable variant, Dronpa2, using amber suppression to introduce electron-donating and electron-withdrawing groups to the phenolate ring. Through analysis of the absorption (color), fluorescence quantum yield, and energy barriers to ground- and excited-state isomerization, we evaluate the contributions of sterics and electrostatics quantitatively and demonstrate how electrostatic effects bias the pathway of chromophore photoisomerization, leading to a generalized framework to guide protein design. 
    more » « less
  5. Bis(bithienyl)-1,2-dicyanoethene (4TCE) is a photoswitch that operates via reversible E / Z photoisomerization following absorption of visible light. cis -to- trans photoisomerization of 4TCE requires excitation below 470 nm, is relatively inefficient (quantum yield < 5%) and occurs via the lowest-lying triplet. We present excitation-wavelength dependent (565–420 nm) transient absorption (TA) studies to probe the photophysics of cis -to- trans isomerization to identify sources of switching inefficiency. TA data reveals contributions from more than one switch conformer and relaxation cascades between multiple states. Fast (∼4 ps) and slow (∼40 ps) components of spectral dynamics observed at low excitation energies (>470 nm) are readily attributed to deactivation of two conformers; this assignment is supported by computed thermal populations and absorption strengths of two molecular geometries (P A and P B ) characterized by roughly parallel dipoles for the thiophenes on opposite sides of the ethene bond. Only the P B conformer is found to contribute to triplet population and the switching of cis -4TCE: high-energy excitation (<470 nm) of P B involves direct excitation to S 2 , relaxation from which prepares an ISC-active S 1 geometry (ISC QY 0.4–0.67, k ISC ∼ 1.6–2.6 × 10 −9 s −1 ) that is the gateway to triplet population and isomerization. We ascribe low cis -to- trans isomerization yield to excitation of the nonreactive P A conformer (75–85% loss) as well as loses along the P B S 2 → S 1 → T 1 cascade (10–20% loss). In contrast, electrocyclization is inhibited by the electronic character of the excited states, as well as a non-existent thermal population of a reactive “antiparallel” ring conformation. 
    more » « less