skip to main content

Title: Lamprey lecticans link new vertebrate genes to the origin and elaboration of vertebrate tissues
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Developmental Biology
Page Range / eLocation ID:
282 to 293
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species 1–4 . To address this issue, the international Genome 10K (G10K) consortium 5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences. 
    more » « less
  2. To understand how foraging decisions impact individual fitness of herbivores, nutritional ecologists must consider the complex in vivo dynamics of nutrient–nutrient interactions and nutrient–toxin interactions associated with foraging. Mathematical modeling has long been used to make foraging predictions (e.g. optimal foraging theory) but has largely been restricted to a single currency (e.g. energy) or using simple indices of nutrition (e.g. fecal nitrogen) without full consideration of physiologically based interactions among numerous co-ingested phytochemicals. Here, we describe a physiologically based model (PBM) that provides a mechanistic link between foraging decisions and demographic consequences. Including physiological mechanisms of absorption, digestion and metabolism of phytochemicals in PBMs allows us to estimate concentrations of ingested and interacting phytochemicals in the body. Estimated phytochemical concentrations more accurately link intake of phytochemicals to changes in individual fitness than measures of intake alone. Further, we illustrate how estimated physiological parameters can be integrated with the geometric framework of nutrition and into integral projection models and agent-based models to predict fitness and population responses of vertebrate herbivores to ingested phytochemicals. The PBMs will improve our ability to understand the foraging decisions of vertebrate herbivores and consequences of those decisions and may help identify key physiological mechanisms that underlie diet-based ecological adaptations. 
    more » « less
  3. null (Ed.)
    Abstract The Late Campanian (Late Cretaceous), upper part of the El Disecado Member, El Gallo Formation, Baja California, México, preserves a rich fossil assemblage of microvertebrates and macrovertebrates, silicified logs, macroscopic plant remains, and pollen that was likely deposited as the distal part of a subaerial fan. The unit was episodic and high energy, with its salient features deriving from active river channels and sheet, debris-flow deposits. Landscape stability is indicated by the presence of compound paleosol horizons, containing Fe2O3 mottling in B horizons, cutans, and calcium carbonate concretions. All of these features indicate wet/dry cyclicity in subsurface horizons, likely attributable to such cyclicity in the climate. Drainage was largely to the north and to a lesser extent, the west; however, some current flow to the south and east is preserved which, in conjunction with the proximal location of marginal marine deposits, suggest the influence of tides in this setting. The fossil vertebrates preserved in this part of the El Disecado Member are almost exclusively allochthonous, preserved as disarticulated isolated clasts in hydraulic equivalence in the braided fluvial system. A relatively diverse microvertebrate assemblage is preserved, the largest components of which are first, dinosaurs, and second, turtles. Non-tetrapod fossils are relatively uncommon, perhaps reflecting an absence of permanent standing water in this depositional setting. Here we report a high-precision U-Pb date of 74.706 + 0.028 Ma (2σ internal uncertainty), obtained from zircons in an airfall tuff. The tuff is located low within the sequence studied; therefore, most of the sedimentology and fossils reported here are slightly younger. This date, which improves upon previously published 40Ar/39Ar geochronology, ultimately allows for comparison of these El Gallo faunas and environments with coeval ones globally. Primary stable isotopic nodules associated with roots in the paleosols of the terrestrial portion of the El Disecado Member are compared with ratios from similar sources from coeval northern and eastern localities in North America. Distinctive latitudinal gradients are observed in both δ13C and δ18O, reflecting the unique southern and western, coastal geographic position of this locality. These differences are best explained by differences in the floras that populated the northern and eastern localities, relative to the southern and western floras reported here. 
    more » « less