skip to main content


Title: Range dynamics mediated by compensatory life stage responses to experimental climate manipulations
Abstract

The expectations of polar or upslope distributional shifts of species ranges in response to warming climate conditions have been recently questioned. Diverse responses of different life stages to changing temperature and moisture regimes may alter these predicted range dynamics. Furthermore, the climate driver(s) influencing demographic rates, and the contribution of each demographic rate to population growth rate (λ), may shift across a species range. We investigated these demographic effects by experimentally manipulating climate and measuring responses of λ in nine populations spanning the elevation range of an alpine plant (Ivesia lycopodioides). Populations exhibited stable growth rates (λ ~ 1) under naturally wet conditions and declining rates (λ < 1) under naturally dry conditions. However, opposing vital rate responses to experimental heating and watering lead to negligible or negative effects on population stability. These findings indicate that life stage–specific responses to changing climate can disrupt the current relationships between population stability and climate across species ranges.

 
more » « less
Award ID(s):
1753954
NSF-PAR ID:
10372246
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
24
Issue:
4
ISSN:
1461-023X
Page Range / eLocation ID:
p. 772-780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Predicting species' range shifts under future climate is a central goal of conservation ecology. Studying populations within and beyond multiple species' current ranges can help identify whether demographic responses to climate change exhibit directionality, indicative of range shifts, and whether responses are uniform across a suite of species.

    We quantified the demographic responses of six native perennial prairie species planted within and, for two species, beyond their northern range limits to a 3‐year experimental manipulation of temperature and precipitation at three sites spanning a latitudinal climate gradient in the Pacific Northwest, USA. We estimated population growth rates (λ) using integral projection models and tested for opposing responses to climate in different demographic vital rates (demographic compensation).

    Where species successfully established reproductive populations, warming negatively affectedλat sites within species' current ranges. Contrarily, warming and drought positively affectedλfor the two species planted beyond their northern range limits. Most species failed to establish a reproductive population at one or more sites within their current ranges, due to extremely low germination and seedling survival. We found little evidence of demographic compensation buffering populations to the climate treatments.

    Synthesis. These results support predictions across a suite of species that ranges will need to shift with climate change as populations within current ranges become increasingly vulnerable to decline. Species capable of dispersing beyond their leading edges may be more likely to persist, as our evidence suggests that projected changes in climate may benefit such populations. If species are unable to disperse to new habitat on their own, assisted migration may need to be considered to prevent the widespread loss of vulnerable species.

     
    more » « less
  2. Abstract

    A rapidly changing climate has the potential to interfere with the timing of environmental cues that ectothermic organisms rely on to initiate and regulate life history events. Short‐lived ectotherms that exhibit plasticity in their life history could increase the number of generations per year under warming climate. If many individuals successfully complete an additional generation, the population experiences an additional opportunity to grow, and a warming climate could lead to a demographic bonanza. However, these plastic responses could become maladaptive in temperate regions, where a warmer climate could trigger a developmental pathway that cannot be completed within the growing season, referred to as a developmental trap. Here we incorporated detailed demography into commonly used photothermal models to evaluate these demographic consequences of phenological shifts due to a warming climate on the formerly widespread, multivoltine butterfly (Pieris oleracea). Using species‐specific temperature‐ and photoperiod‐sensitive vital rates, we estimated the number of generations per year and population growth rate over the set of climate conditions experienced during the past 38 years. We predicted that populations in the southern portion of its range have added a fourth generation in recent years, resulting in higher annual population growth rates (demographic bonanzas). We predicted that populations in the Northeast United States have experienced developmental traps, where increases in the thermal window initially caused mortality of the final generation and reduced growth rates. These populations may recover if more growing degree days are added to the year. Our framework for incorporating detailed demography into commonly used photothermal models demonstrates the importance of using both demography and phenology to predict consequences of phenological shifts.

     
    more » « less
  3. Abstract

    Despite a global footprint of shifts in flowering phenology in response to climate change, the reproductive consequences of these shifts are poorly understood. Furthermore, it is unknown whether altered flowering times affect plant population viability.

    We examine whether climate change‐induced earlier flowering has consequences for population persistence by incorporating reproductive losses from frost damage (a risk of early flowering) into population models of a subalpine sunflower (Helianthella quinquenervis). Using long‐term demographic data for three populations that span the species’ elevation range (8–15 years, depending on the population), we first examine how snowmelt date affects plant vital rates. To verify vital rate responses to snowmelt date experimentally, we manipulate snowmelt date with a snow removal experiment at one population. Finally, we construct stochastic population projection models and Life Table Response Experiments for each population.

    We find that populations decline (λs < 1) as snowmelt dates become earlier. Frost damage to flower buds, a consequence of climate change‐induced earlier flowering, does not contribute strongly to population declines. Instead, we find evidence that negative effects on survival, likely due to increased drought risk during longer growing seasons, drive projected population declines under earlier snowmelt dates.

    Synthesis.Shifts in flowering phenology are a conspicuous and important aspect of biological responses to climate change, but here we show that the phenology of reproductive events can be unreliable measures of threats to population persistence, even when earlier flowering is associated with substantial reproductive losses. Evidence for shifts in reproductive phenology, along with scarcer evidence that these shifts actually influence reproductive success, are valuable but can paint an incomplete and even misleading picture of plant population responses to climate change.

     
    more » « less
  4. Abstract

    Nonhuman primates are an essential part of tropical biodiversity and play key roles in many ecosystem functions, processes, and services. However, the impact of climate variability on nonhuman primates, whether anthropogenic or otherwise, remains poorly understood. In this study, we utilized age‐structured matrix population models to assess the population viability and demographic variability of a population of geladas (Theropithecus gelada) in the Simien Mountains, Ethiopia with the aim of revealing any underlying climatic influences. Using data from 2008 to 2019 we calculated annual, time‐averaged, and stochastic population growth rates (λ) and investigated relationships between vital rate variability and monthly cumulative rainfall and mean temperature. Our results showed that under the prevailing environmental conditions, the population will increase (λs = 1.021). Significant effects from rainfall and/or temperature variability were widely detected across vital rates; only the first year of infant survival and the individual years of juvenile survival were definitively unaffected. Generally, the higher temperature in the hot‐dry season led to lower survival and higher fecundity, while higher rainfall in the hot‐dry season led to increased survival and fecundity. Overall, these results provide evidence of greater effects of climate variability across a wider range of vital rates than those found in previous primate demography studies. This highlights that although primates have often shown substantial resilience to the direct effects of climate change, their vulnerability may vary with habitat type and across populations.

     
    more » « less
  5. Abstract

    Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long‐term demography dataset for the black‐throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low‐elevation plot became locally extinct by 2017. The local population at the mid‐elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid‐elevation plot, although results were more equivocal at the low‐elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low‐elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor‐quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate‐mediated range shift hypothesis. Local populations of black‐throated blue warblers near the warm‐edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions.

     
    more » « less