We present a supervised learning framework of training generative models for density estimation.Generative models, including generative adversarial networks (GANs), normalizing flows, and variational auto-encoders (VAEs), are usually considered as unsupervised learning models, because labeled data are usually unavailable for training. Despite the success of the generative models, there are several issues with the unsupervised training, e.g., requirement of reversible architectures, vanishing gradients, and training instability. To enable supervised learning in generative models, we utilize the score-based diffusion model to generate labeled data. Unlike existing diffusion models that train neural networks to learn the score function, we develop a training-free score estimation method. This approach uses mini-batch-based Monte Carlo estimators to directly approximate the score function at any spatial-temporal location in solving an ordinary differential equation (ODE), corresponding to the reverse-time stochastic differential equation (SDE). This approach can offer both high accuracy and substantial time savings in neural network training. Once the labeled data are generated, we can train a simple, fully connected neural network to learn the generative model in the supervised manner. Compared with existing normalizing flow models, our method does not require the use of reversible neural networks and avoids the computation of the Jacobian matrix. Compared with existing diffusion models, our method does not need to solve the reverse-time SDE to generate new samples. As a result, the sampling efficiency is significantly improved. We demonstrate the performance of our method by applying it to a set of 2D datasets as well as real data from the University of California Irvine (UCI) repository. 
                        more » 
                        « less   
                    
                            
                            Density estimation using deep generative neural networks
                        
                    
    
            Density estimation is one of the fundamental problems in both statistics and machine learning. In this study, we propose Roundtrip, a computational framework for general-purpose density estimation based on deep generative neural networks. Roundtrip retains the generative power of deep generative models, such as generative adversarial networks (GANs) while it also provides estimates of density values, thus supporting both data generation and density estimation. Unlike previous neural density estimators that put stringent conditions on the transformation from the latent space to the data space, Roundtrip enables the use of much more general mappings where target density is modeled by learning a manifold induced from a base density (e.g., Gaussian distribution). Roundtrip provides a statistical framework for GAN models where an explicit evaluation of density values is feasible. In numerical experiments, Roundtrip exceeds state-of-the-art performance in a diverse range of density estimation tasks. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10225576
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 15
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- e2101344118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Density estimation is a widely used method to perform unsupervised anomaly detection. By learning the density function, data points with relatively low densities are classified as anomalies. Unfortunately, the presence of anomalies in training data may significantly impact the density estimation process, thereby imposing significant challenges to the use of more sophisticated density estimation methods such as those based on deep neural networks. In this work, we propose RobustRealNVP, a deep density estimation framework that enhances the robustness of flow-based density estimation methods, enabling their application to unsupervised anomaly detection. RobustRealNVP differs from existing flow-based models from two perspectives. First, RobustRealNVP discards data points with low estimated densities during optimization to prevent them from corrupting the density estimation process. Furthermore, it imposes Lipschitz regularization to the flow-based model to enforce smoothness in the estimated density function. We demonstrate the robustness of our algorithm against anomalies in training data from both theoretical and empirical perspectives. The results show that our algorithm achieves competitive results as compared to state-of-the-art unsupervised anomaly detection methods.more » « less
- 
            In this article, we review the literature on statistical theories of neural networks from three perspectives: approximation, training dynamics, and generative models. In the first part, results on excess risks for neural networks are reviewed in the nonparametric framework of regression. These results rely on explicit constructions of neural networks, leading to fast convergence rates of excess risks. Nonetheless, their underlying analysis only applies to the global minimizer in the highly nonconvex landscape of deep neural networks. This motivates us to review the training dynamics of neural networks in the second part. Specifically, we review articles that attempt to answer the question of how a neural network trained via gradient-based methods finds a solution that can generalize well on unseen data. In particular, two well-known paradigms are reviewed: the neural tangent kernel and mean-field paradigms. Last, we review the most recent theoretical advancements in generative models, including generative adversarial networks, diffusion models, and in-context learning in large language models from two of the same perspectives, approximation and training dynamics.more » « less
- 
            Designing molecules with specific structural and functional properties (e.g., drug-likeness and water solubility) is central to advancing drug discovery and material science, but it poses outstanding challenges both in wet and dry laboratories. The search space is vast and rugged. Recent advances in deep generative models are motivating new computational approaches building over deep learning to tackle the molecular space. Despite rapid advancements, state-of-the-art deep generative models for molecule generation have many limitations, including lack of interpretability. In this paper we address this limitation by proposing a generic framework for interpretable molecule generation based on novel disentangled deep graph generative models with property control. Specifically, we propose a disentanglement enhancement strategy for graphs. We also propose new deep neural architecture to achieve the above learning objective for inference and generation for variable-size graphs efficiently. Extensive experimental evaluation demonstrates the superiority of our approach in various critical aspects, such as accuracy, novelty, and disentanglement.more » « less
- 
            Deep neural networks are susceptible to shortcut learning, using simple features to achieve low training loss without discovering essential semantic structure. Contrary to prior belief, we show that generative models alone are not sufficient to prevent shortcut learning, despite an incentive to recover a more comprehensive representation of the data than discriminative approaches. However, we observe that shortcuts are preferentially encoded with minimal information, a fact that generative models can exploit to mitigate shortcut learning. In particular, we propose Chroma-VAE, a two-pronged approach where a VAE classifier is initially trained to isolate the shortcut in a small latent subspace, allowing a secondary classifier to be trained on the complementary, shortcut-free latent subspace. In addition to demonstrating the efficacy of Chroma-VAE on benchmark and real-world shortcut learning tasks, our work highlights the potential for manipulating the latent space of generative classifiers to isolate or interpret specific correlations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    