skip to main content

Title: Climate and ecological disturbance analysis of Engelmann spruce and Douglas fir in the greater Yellowstone ecosystem
The effects of anthropogenic climate change are apparent in the Greater Yellowstone Ecosystem (GYE), USA, with forest die-off, insect outbreaks, and wildfires impacting forest ecosystems. A long-term perspective would enable assessment of the historical range of variability in forest ecosystems and better determination of recent forest dynamics and historical thresholds. The objectives of this study were to (1) develop tree-ring chronologies for Engelmann spruce and Douglas fir growing at the study location, (2) correlate the annual ring widths of each species to monthly climate variables, (3) examine the instrumental climate data for regimes shifts in the mean state of variables, and (4) determine when ecological disturbances occurred through a quantification of growth releases. Finally, we discuss both climate-growth relationships and growth releases in the context of climate regime shifts and known forest disturbances. Engelmann spruce and Douglas fir showed some similar climate responses using moving correlation analysis including negative correlations between ring width and June –August current year temperature and previous growing season temperature. Regime shift analysis indicated significant ( p < 0.05) shifts in minimum and maximum GYE temperature in the latter half of the 20th century. Disturbance analysis indicated that both tree species responded to wildfire and insect more » outbreak events with growth releases in up to 25% of the trees. Disentangling the influence of climate regime shifts and forest disturbances on the climate- growth relationships can be difficult because climate and forest disturbances are intricately linked. Our evidence indicates that regime shifts in monthly climate variables and forest disturbances as recorded by growth releases can influence the ring width response to climate over time. Trees are key to providing a long-term perspective on climate and ecological health across the GYE because they integrate both climate and ecology in their annual ring widths. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Trees forests and people
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Legacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wetmore »and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.

    « less
  2. Changes in climate are altering disturbance regimes in forests of western North America, leading to increases in the potential for disturbance events to overlap in time and space. Though interactions between abiotic and biotic disturbance (e.g., the effect of bark beetle outbreak on subsequent wildfire) have been widely studied, interactions between multiple biotic disturbances are poorly understood. Defoliating insects, such as the western spruce budworm (WSB; Choristoneura freemanni), have been widely suggested to predispose trees to secondary colonization by bark beetles, such as the Douglas-fir beetle (DFB; Dendroctonus pseudotsugae). However, there is little quantitative research that supports this observation. Here, we asked: Does previous WSB damage increase the likelihood of subsequent DFB outbreak in Douglas-fir (Pseudotsuga menziesii) forests of the Southern Rocky Mountains, USA? To quantify areas affected by WSB and then DFB, we analyzed Aerial Detection Survey data from 1999–2019. We found that a DFB presence followed WSB defoliation more often than expected under a null model (i.e., random distribution). With climate change expected to intensify some biotic disturbances, an understanding of the interactions between insect outbreaks is important for forest management planning, as well as for improving our understanding of forest change.
  3. Climate change is increasing fire activity in the western United States, which has the potential to accelerate climate-induced shifts in vegetation communities. Wildfire can catalyze vegetation change by killing adult trees that could otherwise persist in climate conditions no longer suitable for seedling establishment and survival. Recently documented declines in postfire conifer recruitment in the western United States may be an example of this phenomenon. However, the role of annual climate variation and its interaction with long-term climate trends in driving these changes is poorly resolved. Here we examine the relationship between annual climate and postfire tree regeneration of two dominant, low-elevation conifers (ponderosa pine and Douglas-fir) using annually resolved establishment dates from 2,935 destructively sampled trees from 33 wildfires across four regions in the western United States. We show that regeneration had a nonlinear response to annual climate conditions, with distinct thresholds for recruitment based on vapor pressure deficit, soil moisture, and maximum surface temperature. At dry sites across our study region, seasonal to annual climate conditions over the past 20 years have crossed these thresholds, such that conditions have become increasingly unsuitable for regeneration. High fire severity and low seed availability further reduced the probability of postfire regeneration.more »Together, our results demonstrate that climate change combined with high severity fire is leading to increasingly fewer opportunities for seedlings to establish after wildfires and may lead to ecosystem transitions in low-elevation ponderosa pine and Douglas-fir forests across the western United States.

    « less
  4. Global warming and related disturbances, such as drought, water, and heat stress, are causing forest decline resulting in regime shifts. Conventional studies have combined tree-ring width (TRW) and the normalized difference vegetation index (NDVI) to reconstruct NDVI values and ignored the influences of mixed land covers. We built an integrated TRW-NDVI model and reconstructed the annual NDVI maps by using 622 Landsat satellite images and tree cores from 15 plots using point-by-point regression. Our model performed well in the study area, as demonstrated by significant reconstructions for 71.14% (p < 0.05) of the area with the exclusion of water and barren areas. The error rate between the reconstructed NDVI using the conventional approach and our approach could reach 10.36%. The 30 m resolution reconstructed NDVI images in the recent 100 years clearly displayed a decrease in vegetation density and detected decades-long regime shifts from 1906 to 2015. Our study site experienced five regime shifts, markedly the 1930s and 1950s, which were megadroughts across North America. With fine resolution maps, regime shifts could be observed annually at the centennial scale. They can also be used to understand how the Yellowstone ecosystem has gradually changed with its ecological legacies in the lastmore »century.« less
  5. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial Nmore »export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018)« less