skip to main content


Title: Elongation and percolation of defect motifs in anisotropic packing problems
We examine the regime between crystalline and amorphous packings of anisotropic objects on surfaces of different genus by continuously varying their size distribution or shape from monodispersed spheres to bidispersed mixtures or monodispersed ellipsoidal particles; we also consider an anisotropic variant of the Thomson problem with a mixture of charges. With increasing anisotropy, we first observe the disruption of translational order with an intermediate orientationally ordered hexatic phase as proposed by Nelson, Rubinstein and Spaepen, and then a transition to amorphous state. By analyzing the structure of the disclination motifs induced, we show that the hexatic-amorphous transition is caused by the growth and connection of disclination grain boundaries, suggesting this transition lies in the percolation universality class in the scenarios considered.  more » « less
Award ID(s):
1654283
PAR ID:
10225845
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
16
ISSN:
1744-683X
Page Range / eLocation ID:
4426 to 4433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study packings of bidispersed spherical particles on a spherical surface. The presence of curvature necessitates defects even for monodispersed particles; bidispersity either leads to a more disordered packing for nearly equal radii, or a higher fill fraction when the smaller particles are accommodated in the interstices of the larger spheres. Variation in the packing fraction is explained by a percolation transition, as chains of defects or scars previously discovered in the monodispersed case grow and eventually disconnect the neighbor graph. 
    more » « less
  2. null (Ed.)
    In 3D nematic liquid crystals, disclination lines have a range of geometric structures. Locally, they may resemble +1/2 or −1/2 defects in 2D nematic phases, or they may have 3D twist. Here, we analyze the structure in terms of the director deformation modes around the disclination, as well as the nematic order tensor inside the disclination core. Based on this analysis, we construct a vector to represent the orientation of the disclination, as well as tensors to represent higher-order structure. We apply this method to simulations of a 3D disclination arch, and determine how the structure changes along the contour length. We then use this geometric analysis to investigate three types of forces acting on a disclination: Peach–Koehler forces due to external stress, interaction forces between disclination lines, and active forces. These results apply to the motion of disclination lines in both conventional and active liquid crystals. 
    more » « less
  3. Topological structures are effective descriptors of the nonequilibrium dynamics of diverse many-body systems. For example, motile, point-like topological defects capture the salient features of two-dimensional active liquid crystals composed of energy-consuming anisotropic units. We dispersed force-generating microtubule bundles in a passive colloidal liquid crystal to form a three-dimensional active nematic. Light-sheet microscopy revealed the temporal evolution of the millimeter-scale structure of these active nematics with single-bundle resolution. The primary topological excitations are extended, charge-neutral disclination loops that undergo complex dynamics and recombination events. Our work suggests a framework for analyzing the nonequilibrium dynamics of bulk anisotropic systems as diverse as driven complex fluids, active metamaterials, biological tissues, and collections of robots or organisms.

     
    more » « less
  4. Disclination lines play a key role in many physical processes, from the fracture of materials to the formation of the early universe. Achieving versatile control over disclinations is key to developing novel electro-optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, we introduce a theoretical framework to tailor three-dimensional disclination architecture in nematic liquid crystals experimentally. We produce quantitative predictions for the connectivity and shape of disclination lines found in nematics confined between two thinly spaced glass substrates with strong patterned planar anchoring. By drawing an analogy between nematic liquid crystals and magnetostatics, we find that i) disclination lines connect defects with the same topological charge on opposite surfaces and ii) disclination lines are attracted to regions of the highest twist. Using polarized light to pattern the in-plane alignment of liquid crystal molecules, we test these predictions experimentally and identify critical parameters that tune the disclination lines’ curvature. We verify our predictions with computer simulations and find nondimensional parameters enabling us to match experiments and simulations at different length scales. Our work provides a powerful method to understand and practically control defect lines in nematic liquid crystals.

     
    more » « less
  5. An exact kinematic law for the motion of disclination lines in nematic liquid crystals as a function of the tensor order parameterQis derived. Unlike other order parameter fields that become singular at their respective defect cores, the tensor order parameter remains regular. Following earlier experimental and theoretical work, the disclination core is defined to be the line where the uniaxial and biaxial order parameters are equal, or equivalently, where the two largest eigenvalues ofQcross. This allows an exact expression relating the velocity of the line to spatial and temporal derivatives ofQon the line, to be specified by a dynamical model for the evolution of the nematic. By introducing a linear core approximation forQ, analytical results are given for several prototypical configurations, including line interactions and motion, loop annihilation, and the response to external fields and shear flows. Behaviour that follows from topological constraints or defect geometry is highlighted. The analytic results are shown to be in agreement with three-dimensional numerical calculations based on a singular Maier–Saupe free energy that allows for anisotropic elasticity.

     
    more » « less