skip to main content


Title: Beyond the VPN: Practical Client Identity in an Internet with Widespread IP Address Sharing
To support remote employees, organizations often use virtual private networks (VPNs) to provide confidential and authenticated tunnels between the organization’s networks and the employees’ systems. With widespread end-to-end application layer encryption and authentication, the cryptographic features of VPNs are often redundant. However, many organizations still rely upon VPNs. We examine the motivations and limitations associated with VPNs and find that VPNs are often used to simplify access control and filtering for enterprise services. To avoid limitations associated with VPNs, we propose an approach that allows straightforward filtering. Our approach provides evidence a remote user belongs in a network, despite the address sharing present in tools like Carrier-Grade Network Address Translation. We preserve simple access control and eliminate the need for VPN servers, redundant cryptography, and VPN packet headers overheads. The approach is incrementally deployable and provides a second factor for authenticating users and systems while minimizing performance overheads.  more » « less
Award ID(s):
1651540
NSF-PAR ID:
10225846
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Conference on Local Computer Networks
ISSN:
0742-1303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Virtual private networks (VPNs) allow organizations to support their remote employees by creating tunnels that ensure confidentiality, integrity and authenticity of communicated packets. However, these same services are often provided by the application, in protocols such as TLS. As a result, the historical driving force for VPNs may be in decline. Instead, VPNs are often used to determine whether a communicating host is a legitimate member of the network to simplify filtering and access control. However, this comes with a cost: VPN implementations often introduce performance bottlenecks that affect the user experience. To preserve straightforward filtering without the limitations of VPN deployments, we explore a simple network-level identifier that allows remote users to provide evidence that they have previously been vetted. This approach uniquely identifies each user, even if they are behind Carrier-Grade Network Address Translation, which causes widespread IP address sharing. Such identifiers remove the redundant cryptography, packet header overheads, and need for dedicated servers to implement VPNs. This lightweight approach can achieve access control goals with minimal performance overheads. 
    more » « less
  2. Summary

    The Pacific Rim Application and Grid Middleware Assembly (PRAGMA) is an international community of researchers that actively collaborate to address problems and challenges of common interest in eScience. The PRAGMA Experimental Network Testbed (PRAGMA‐ENT) was established with the goal of constructing an international software‐defined network (SDN) testbed to offer the necessary networking support to the PRAGMA cyberinfrastructure. PRAGMA‐ENT is isolated, and PRAGMA researchers have complete freedom to access network resources to develop, experiment, and evaluate new ideas without the concerns of interfering with production networks.

    In the first phase, PRAGMA‐ENT focused on establishing an international L2 backbone. With support from the Florida Lambda Rail, Internet2, PacificWave, Japan Gigabit Network, and TaiWan Advanced Research and Education Network, PRAGMA‐ENT backbone connects openflow‐enabled switches at University of Florida, University of California, San Diego, Nara Institute of Science and Technology (Japan), Osaka University (Japan), National Institute of Advanced Industrial Science and Technology (Japan), and National Applied Research Laboratories (Taiwan).

    The second phase of PRAGMA‐ENT consisted of an evaluation of technologies for the control plane that enables multiple experiments (ie, OpenFlow controllers) to coexist. Preliminary experiments with FlowVisor revealed some limitations leading to the development of a new approach, called AutoVFlow.

    This paper describes our experience in the establishment of PRAGMA‐ENT backbone (with international L2 links), its current status, and plans for the control plane. Discussion of preliminary application ideas, including optimization of routing control; multipath routing control; extending the backbone using overlay network; and remote visualization are also discussed.

     
    more » « less
  3. Conference Title: 2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL) Conference Start Date: 2021, Sept. 27 Conference End Date: 2021, Sept. 30 Conference Location: Champaign, IL, USAMetadata are key descriptors of research data, particularly for researchers seeking to apply machine learning (ML) to the vast collections of digitized specimens. Unfortunately, the available metadata is often sparse and, at times, erroneous. Additionally, it is prohibitively expensive to address these limitations through traditional, manual means. This paper reports on research that applies machine-driven approaches to analyzing digitized fish images and extracting various important features from them. The digitized fish specimens are being analyzed as part of the Biology Guided Neural Networks (BGNN) initiative, which is developing a novel class of artificial neural networks using phylogenies and anatomy ontologies. Automatically generated metadata is crucial for identifying the high-quality images needed for the neural network's predictive analytics. Methods that combine ML and image informatics techniques allow us to rapidly enrich the existing metadata associated with the 7,244 images from the Illinois Natural History Survey (INHS) used in our study. Results show we can accurately generate many key metadata properties relevant to the BGNN project, as well as general image quality metrics (e.g. brightness and contrast). Results also show that we can accurately generate bounding boxes and segmentation masks for fish, which are needed for subsequent machine learning analyses. The automatic process outperforms humans in terms of time and accuracy, and provides a novel solution for leveraging digitized specimens in ML. This research demonstrates the ability of computational methods to enhance the digital library services associated with the tens of thousands of digitized specimens stored in open-access repositories worldwide. 
    more » « less
  4. Intellectual Property (IP) thefts of trained machine learning (ML) models through side-channel attacks on inference engines are becoming a major threat. Indeed, several recent works have shown reverse engineering of the model internals using such attacks, but the research on building defenses is largely unexplored. There is a critical need to efficiently and securely transform those defenses from cryptography such as masking to ML frameworks. Existing works, however, revealed that a straightforward adaptation of such defenses either provides partial security or leads to high area overheads. To address those limitations, this work proposes a fundamentally new direction to construct neural networks that are inherently more compatible with masking. The key idea is to use modular arithmetic in neural networks and then efficiently realize masking, in either Boolean or arithmetic fashion, depending on the type of neural network layers. We demonstrate our approach on the edge-computing friendly binarized neural networks (BNN) and show how to modify the training and inference of such a network to work with modular arithmetic without sacrificing accuracy. We then design novel masking gadgets using Domain-Oriented Masking (DOM) to efficiently mask the unique operations of ML such as the activation function and the output layer classification, and we prove their security in the glitch-extended probing model. Finally, we implement fully masked neural networks on an FPGA, quantify that they can achieve a similar latency while reducing the FF and LUT costs over the state-of-the-art protected implementations by 34.2% and 42.6%, respectively, and demonstrate their first-order side-channel security with up to 1M traces. 
    more » « less
  5. Spiking neural networks are viable alternatives to classical neural networks for edge processing in low-power embedded and IoT devices. To reap their benefits, neuromorphic network accelerators that tend to support deep networks still have to expend great effort in fetching synaptic states from a large remote memory. Since local computation in these networks is event-driven, memory becomes the major part of the system's energy consumption. In this paper, we explore various opportunities of data reuse that can help mitigate the redundant traffic for retrieval of neuron meta-data and post-synaptic weights. We describe CyNAPSE, a baseline neural processing unit and its accompanying software simulation as a general template for exploration on various levels. We then investigate the memory access patterns of three spiking neural network benchmarks that have significantly different topology and activity. With a detailed study of locality in memory traffic, we establish the factors that hinder conventional cache management philosophies from working efficiently for these applications. To that end, we propose and evaluate a domain-specific management policy that takes advantage of the forward visibility of events in a queue-based event-driven simulation framework. Subsequently, we propose network-adaptive enhancements to make it robust to network variations. As a result, we achieve 13-44% reduction in system power consumption and 8-23% improvement over conventional replacement policies. 
    more » « less