skip to main content


Title: Building an Effective Advisory Board for Grant Submissions
This Special Session will engage engineering and computing education professionals in an interactive discussion of how to find and use the expertise of an advisory board when writing and executing funded projects. Our recent research of effective practices for supporting early career faculty in engineering education has shown that grant administration is an area that many faculty feel unprepared to manage. Beyond writing an excellent grant proposal, the skills required to carry out the planned grant activities are different from those addressed in existing professional development opportunities and are essential the success of a grant. This session will provide an interactive discussion and development of tools on one specific aspect of grant proposal writing and management—advisory boards. Advisory boards are an essential part of leveraging the expertise in the wider engineering education community, but there are various ways of strategically building and engaging advisory boards in grant work. The outcomes of this session will be a set of tools for faculty to use in building and leveraging the expertise of an advisory board in grant submissions.  more » « less
Award ID(s):
1837808
NSF-PAR ID:
10225859
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Frontiers in Education Conference (FIE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This theory paper describes the development and use of a framework for supporting early career faculty development, especially in competitive National Science Foundation (NSF) CAREER proposals. Engineering Education Research (EER) has developed into a field of expertise and a career pathway over the past three decades. In response to numerous reports in the 1990s and early 2000s, multiple EER graduate programs were established in the mid-2000s and a growing number continue to emerge to educate and train the next generation of EER faculty and policy makers. Historically, many came to EER as individuals trained in other disciplines, but with an interest in improving teaching and learning. This approach created an interdisciplinary space where many could learn the norms, practices, and language of EER, as they became scholars. This history combined with the emergence of EER as a discipline with academic recognition; specific knowledge, frameworks, methodologies, and ways of conducting research; and particular emphasis and goals, creates a tension for building capacity to continue to develop EER and also include engineering education researchers who have not completed PhDs in an engineering education program. If EER is to continue to develop and emerge as a strong and robust discipline with high quality engineering education research, support mechanisms must be developed to both recognize outstanding EER scholars and develop the next generation of researchers in the field. The Five I’s framework comes from a larger project on supporting early career EER faculty in developing NSF CAREER proposals. Arguably, a NSF CAREER award is significant external recognition of EER that signals central membership in the community. The Five I’s were developed using collaborative inquiry, a tool and process to inform practice, with 19 EER CAREER awardees during a retreat in March 2019. The Five I’s include: Ideas, Integration, Impact, Identity, and Infrastructure. Ideas is researchers’ innovative and potentially transformative ideas that can make a significant contribution to EER. All NSF proposals are evaluated using the criteria of intellectual merit and broader impacts, and ideas aligned with these goals are essential for funding success. The integration of research and education is a specific additional consideration of CAREER proposals. Both education and research must inform one another in the proposal process. Demonstrating the impact of research is essential to convey why research should be funded. This impact is essential to address as it directly relates to the NSF criteria of broader impacts as well as why an individual is positioned to carry out that impact. This positioning is tied to identity or the particular research expertise from which a faculty member will be a leader in the field. Finally, infrastructure includes the people and physical resources from which a faculty member must draw to be successful. This framework has proven useful in helping early career faculty evaluate their readiness to apply for an NSF CAREER award or highlight the particular areas of their development that could be improved for future success. 
    more » « less
  2. null (Ed.)
    HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation (NSF) that joins two successful programs. Mentor-Connect mentors 2-year college faculty to develop competitive proposals for the NSF Advanced Technological Education (ATE) Program, and KickStarter facilitates strategic STEM assessment and planning to drive competitive STEM proposal development at 2-year Hispanic Serving Institutions (HSIs). The goal of HSI ATE Hub is to build capacity and leadership at 2-year HSIs for developing competitive ATE proposals to elevate 2-year HSIs as drivers of their community’s economic success via technician education. Data sets from three annual HSI ATE Hub Cohorts, four prior KickStarter Cohorts, and nine Mentor-Connect Cohorts have been aggregated to assess the following research questions about 2-year HSIs: Are there unique opportunities/barriers/challenges related to STEM program development and grant-writing endeavors for advanced technological education? How do we build capacity to pursue the opportunities and address the barriers/challenges? How do mentoring efforts/styles related to STEM program development and grant-writing need to differ for HSI faculty? What types of resources are relevant to the HSI ATE Community? This third paper in a series will report new data and incremental results from Year 3 of the HSI ATE Hub and a summary of results from the prior two years [1] [2]. These results include interactions with the HSI ATE community through intentional, expanded engagement to enhance learning from Latinx Advisory Council members and training webinars to develop educators’ acumen of culturally responsive instruction and high impact practices. Feedback from interviews and surveys with faculty at 2-year HSIs in HSI ATE Hub Cohorts 1-3 will be discussed to address research questions 1, 2, and 3. Evolved staging of resources relevant to the HSI ATE Community and related research directions for extending the project will address research question 4. 
    more » « less
  3. null (Ed.)
    HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation (NSF) that joins two successful programs. Mentor-Connect mentors 2-year college faculty to develop competitive proposals for the NSF Advanced Technological Education (ATE) Program, and KickStarter facilitates strategic STEM assessment and planning to drive competitive STEM proposal development at 2-year Hispanic Serving Institutions (HSIs). The goal of HSI ATE Hub is to build capacity and leadership at 2-year HSIs for developing competitive ATE proposals to elevate 2-year HSIs as drivers of their community’s economic success via technician education. Data sets from three annual HSI ATE Hub Cohorts, four prior KickStarter Cohorts, and nine Mentor-Connect Cohorts have been aggregated to assess the following research questions about 2-year HSIs: Are there unique opportunities/barriers/challenges related to STEM program development and grant-writing endeavors for advanced technological education? How do we build capacity to pursue the opportunities and address the barriers/challenges? How do mentoring efforts/styles related to STEM program development and grant-writing need to differ for HSI faculty? What types of resources are relevant to the HSI ATE Community? This third paper in a series will report new data and incremental results from Year 3 of the HSI ATE Hub and a summary of results from the prior two years [1] [2]. These results include interactions with the HSI ATE community through intentional, expanded engagement to enhance learning from Latinx Advisory Council members and training webinars to develop educators’ acumen of culturally responsive instruction and high impact practices. Feedback from interviews and surveys with faculty at 2-year HSIs in HSI ATE Hub Cohorts 1-3 will be discussed to address research questions 1, 2, and 3. Evolved staging of resources relevant to the HSI ATE Community and related research directions for extending the project will address research question 4. 
    more » « less
  4. This research paper investigates how individual change agents come together to form effective teams. Improving equity within academic engineering requires changes that are often too complex and too high-risk for a faculty member to pursue on their own. Teams offer the advantage of combining a diverse skill set of many individuals, as well as bringing together insider knowledge and external specialist expertise. However, in order for teams of academic change agents to function effectively, they must overcome the challenges of internal politics, power differentials, and group conflict. This analysis of team formation emerges from our participatory action research with recipients of the NSF Revolutionizing Engineering Departments (RED) grants. Through an NSF-funded collaboration between the University of Washington and Rose-Hulman Institute of Technoliogy, we work with the RED teams to research the process of change as they work to improve equity and inclusion within their institutions. Utilizing longitudinal qualitative data from focus group discussions with 16 teams at the beginning and midpoints of their projects, we examine the development of teams to transform engineering education. Drawing on theoretical frameworks from social movement theory, we highlight the importance of creating a unified team voice and developing a sense of group agency. Teams have a better chance of achieving their goals if members are able to create a unified voice—that is, a shared sense of purpose and vision for their team. We find that the development of a team’s unified voice begins with proposal writing. When members of RED teams did not collaboratively write the grant proposal, they found it necessary to devote more time to develop a sense of shared vision for their project. For many RED teams, the development of a unified voice was further strengthened through external messaging, as they articulated a “we” in opposition to a “they” who have different values or interests. Group agency develops as a result of team members perceiving their goals as attainable and their efforts, as both individuals and a group, as worthwhile. That is, group agency is dependent on both the credibility of the team as well as trust among team members. For some of the RED teams, the NSF requirement to include social scientists and education researchers on their teams gave the engineering team members new, increased exposure to these fields. RED teams found that creating mutual respect was foundational for working across disciplinary differences and developing group agency. 
    more » « less
  5. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less