skip to main content


Title: Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences
Abstract

Structural variation in plant genomes is a significant driver of phenotypic variability in traits important for the domestication and productivity of crop species. Among these are traits that depend on functional meristems, populations of stem cells maintained by the CLAVATA-WUSCHEL (CLV-WUS) negative feedback-loop that controls the expression of the WUS homeobox transcription factor. WUS function and impact on maize development and yield remain largely unexplored. Here we show that the maize dominantBarren inflorescence3(Bif3) mutant harbors a tandem duplicated copy of theZmWUS1gene,ZmWUS1-B, whose novel promoter enhances transcription in a ring-like pattern. Overexpression ofZmWUS1-Bis due to multimerized binding sites for type-B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. Hypersensitivity to cytokinin causes stem cell overproliferation and major rearrangements ofBif3inflorescence meristems, leading to the formation of ball-shaped ears and severely affecting productivity. These findings establishZmWUS1as an essential meristem size regulator in maize and highlight the striking effect of cis-regulatory variation on a key developmental program.

 
more » « less
Award ID(s):
2026561
NSF-PAR ID:
10225916
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plant shoots grow from stem cells within shoot apical meristems (SAMs), which produce lateral organs while maintaining the stem cell pool. In the model flowering plant Arabidopsis , the CLAVATA (CLV) pathway functions antagonistically with cytokinin signaling to control the size of the multicellular SAM via negative regulation of the stem cell organizer WUSCHEL (WUS). Although comprising just a single cell, the SAM of the model moss Physcomitrium patens (formerly Physcomitrella patens ) performs equivalent functions during stem cell maintenance and organogenesis, despite the absence of WUS-mediated stem cell organization. Our previous work showed that the stem cell–delimiting function of the receptors CLAVATA1 (CLV1) and RECEPTOR-LIKE PROTEIN KINASE2 (RPK2) is conserved in the moss P. patens . Here, we use P. patens to assess whether CLV–cytokinin cross-talk is also an evolutionarily conserved feature of stem cell regulation. Application of cytokinin produces ectopic stem cell phenotypes similar to Ppclv1a , Ppclv1b , and Pprpk2 mutants. Surprisingly, cytokinin receptor mutants also form ectopic stem cells in the absence of cytokinin signaling. Through modeling, we identified regulatory network architectures that recapitulated the stem cell phenotypes of Ppclv1a , Ppclv1b , and Pprpk2 mutants, cytokinin application, cytokinin receptor mutations, and higher-order combinations of these perturbations. These models predict that Pp CLV1 and Pp RPK2 act through separate pathways wherein Pp CLV1 represses cytokinin-mediated stem cell initiation, and Pp RPK2 inhibits this process via a separate, cytokinin-independent pathway. Our analysis suggests that cross-talk between CLV1 and cytokinin signaling is an evolutionarily conserved feature of SAM homeostasis that preceded the role of WUS in stem cell organization. 
    more » « less
  2. Crop engineering and de novo domestication using gene editing are new frontiers in agriculture. However, outside of well-studied crops and model systems, prioritizing engineering targets remains challenging. Evolution can guide us, revealing genes with deeply conserved roles that have repeatedly been selected in the evolution of plant form. Homologs of the transcription factor genesGRASSY TILLERS1(GT1) andSIX-ROWED SPIKE1(VRS1) have repeatedly been targets of selection in domestication and evolution, where they repress growth in many developmental contexts. This suggests a conserved role for these genes in regulating growth repression. To test this, we determined the roles ofGT1andVRS1homologs in maize (Zea mays) and the distantly related grass brachypodium (Brachypodium distachyon) using gene editing and mutant analysis. In maize,gt1; vrs1-like1(vrl1) mutants have derepressed growth of floral organs. In addition,gt1; vrl1mutants bore more ears and more branches, indicating broad roles in growth repression. In brachypodium,Bdgt1;Bdvrl1mutants have more branches, spikelets, and flowers than wild-type plants, indicating conserved roles forGT1andVRS1homologs in growth suppression overca.59 My of grass evolution. Importantly, many of these traits influence crop productivity. Notably, maizeGT1can suppress growth in arabidopsis (Arabidopsis thaliana) floral organs, despiteca. 160 My of evolution separating the grasses and arabidopsis. Thus,GT1andVRS1maintain their potency as growth regulators across vast timescales and in distinct developmental contexts. This work highlights the power of evolution to inform gene editing in crop improvement.

     
    more » « less
  3. Abstract

    AUXIN RESPONSE FACTORS (ARFs) are plant-specific transcription factors (TFs) that couple perception of the hormone auxin to gene expression programs essential to all land plants. As with many large TF families, a key question is whether individual members determine developmental specificity by binding distinct target genes. We use DAP-seq to generate genome-wide in vitro TF:DNA interaction maps for fourteen maize ARFs from the evolutionarily conserved A and B clades. Comparative analysis reveal a high degree of binding site overlap for ARFs of the same clade, but largely distinct clade A and B binding. Many sites are however co-occupied by ARFs from both clades, suggesting transcriptional coordination for many genes. Among these, we investigate known QTLs and use machine learning to predict the impact ofcis-regulatory variation. Overall, large-scale comparative analysis of ARF binding suggests that auxin response specificity may be determined by factors other than individual ARF binding site selection.

     
    more » « less
  4. Summary

    Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large‐scale systems‐level analysis of the protein–DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high‐throughput enhanced yeast one‐hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety ofcis‐regulatory elements (CREs) in ER stress‐responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription‐regulatory mechanisms in the stress responses and crop improvement.

     
    more » « less
  5. Abstract

    High‐throughput phenotyping (HTP) with unoccupied aerial systems (UAS), consisting of unoccupied aerial vehicles (UAV; or drones) and sensor(s), is an increasingly promising tool for plant breeders and researchers. Enthusiasm and opportunities from this technology for plant breeding are similar to the emergence of genomic tools ∼30 years ago, and genomic selection more recently. Unlike genomic tools, HTP provides a variety of strategies in implementation and utilization that generate big data on the dynamic nature of plant growth formed by temporal interactions between growth and environment. This review lays out strategies deployed across four major staple crop species: cotton (Gossypium hirsutumL.), maize (Zea maysL.), soybean (Glycine maxL.), and wheat (Triticum aestivumL.). Each crop highlighted in this review demonstrates how UAS‐collected data are employed to automate and improve estimation or prediction of objective phenotypic traits. Each crop section includes four major topics: (a) phenotyping of routine traits, (b) phenotyping of previously infeasible traits, (c) sample cases of UAS application in breeding, and (d) implementation of phenotypic and phenomic prediction and selection. While phenotyping of routine agronomic and productivity traits brings advantages in time and resource optimization, the most potentially beneficial application of UAS data is in collecting traits that were previously difficult or impossible to quantify, improving selection efficiency of important phenotypes. In brief, UAS sensor technology can be used for measuring abiotic stress, biotic stress, crop growth and development, as well as productivity. These applications and the potential implementation of machine learning strategies allow for improved prediction, selection, and efficiency within breeding programs, making UAS HTP a potentially indispensable asset.

     
    more » « less