skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences
Abstract Structural variation in plant genomes is a significant driver of phenotypic variability in traits important for the domestication and productivity of crop species. Among these are traits that depend on functional meristems, populations of stem cells maintained by the CLAVATA-WUSCHEL (CLV-WUS) negative feedback-loop that controls the expression of the WUS homeobox transcription factor. WUS function and impact on maize development and yield remain largely unexplored. Here we show that the maize dominantBarren inflorescence3(Bif3) mutant harbors a tandem duplicated copy of theZmWUS1gene,ZmWUS1-B, whose novel promoter enhances transcription in a ring-like pattern. Overexpression ofZmWUS1-Bis due to multimerized binding sites for type-B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. Hypersensitivity to cytokinin causes stem cell overproliferation and major rearrangements ofBif3inflorescence meristems, leading to the formation of ball-shaped ears and severely affecting productivity. These findings establishZmWUS1as an essential meristem size regulator in maize and highlight the striking effect of cis-regulatory variation on a key developmental program.  more » « less
Award ID(s):
2026561
PAR ID:
10225916
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plant shoots grow from stem cells within shoot apical meristems (SAMs), which produce lateral organs while maintaining the stem cell pool. In the model flowering plant Arabidopsis , the CLAVATA (CLV) pathway functions antagonistically with cytokinin signaling to control the size of the multicellular SAM via negative regulation of the stem cell organizer WUSCHEL (WUS). Although comprising just a single cell, the SAM of the model moss Physcomitrium patens (formerly Physcomitrella patens ) performs equivalent functions during stem cell maintenance and organogenesis, despite the absence of WUS-mediated stem cell organization. Our previous work showed that the stem cell–delimiting function of the receptors CLAVATA1 (CLV1) and RECEPTOR-LIKE PROTEIN KINASE2 (RPK2) is conserved in the moss P. patens . Here, we use P. patens to assess whether CLV–cytokinin cross-talk is also an evolutionarily conserved feature of stem cell regulation. Application of cytokinin produces ectopic stem cell phenotypes similar to Ppclv1a , Ppclv1b , and Pprpk2 mutants. Surprisingly, cytokinin receptor mutants also form ectopic stem cells in the absence of cytokinin signaling. Through modeling, we identified regulatory network architectures that recapitulated the stem cell phenotypes of Ppclv1a , Ppclv1b , and Pprpk2 mutants, cytokinin application, cytokinin receptor mutations, and higher-order combinations of these perturbations. These models predict that Pp CLV1 and Pp RPK2 act through separate pathways wherein Pp CLV1 represses cytokinin-mediated stem cell initiation, and Pp RPK2 inhibits this process via a separate, cytokinin-independent pathway. Our analysis suggests that cross-talk between CLV1 and cytokinin signaling is an evolutionarily conserved feature of SAM homeostasis that preceded the role of WUS in stem cell organization. 
    more » « less
  2. SUMMARY WUSCHEL (WUS) is transcription factor vital for stem cell proliferation in plant meristems. In maize,ZmWUS1is expressed in the inflorescence meristem, including the central zone, the reservoir of stem cells.ZmWUS1overexpression in theBarren inflorescence3mutant leads to defects in inflorescence development. Here, single-cell ATAC-seq analysis shows thatZmWUS1overexpression alters chromatin accessibility throughout the central zone. The CAATAATGC motif, a known homeodomain recognition site, is predominantly observed in the regions with increased chromatin accessibility suggesting ZmWUS1 is an activator in the central zone. Regions with decreased chromatin accessibility feature various motifs and are adjacent toAUXIN RESPONSE FACTORgenes, revealing negative regulation of auxin signaling in the central zone. DAP-seq of ZmWUS1 identified the TGAATGAA motif, abundant in epidermal accessible chromatin compared to the central zone. These findings highlight ZmWUS1’s context-dependent mechanisms for stem cell maintenance in the inflorescence meristem. 
    more » « less
  3. Abstract The precise regulation of stem cells in the shoot apical meristems (SAMs) involves the function of the homeodomain transcription factor (TF)‐WUSCHEL (WUS). WUS has been shown to move from the site of production‐the rib‐meristem (RM), into overlaying cells of the central zone (CZ), where it specifies stem cells and also regulates the transcription ofCLAVATA3 (CLV3). The secreted signalling peptide CLV3 activates a receptor kinase signalling that restrictsWUStranscription and also regulates the nuclear gradient of WUS by offsetting nuclear export. WUS has been shown to regulate bothCLV3levels and spatial activation, restricting its expression to a few cells in the CZ. The HAIRY MERISTEM (HAM), a GRASS‐domain class of TFs expressed in the RM, has been shown to physically interact with WUS and regulateCLV3expression. However, the mechanisms by which this interaction regulatesCLV3expression non‐cell autonomously remain unclear. Here, we show that HAM function is required for regulating the WUS protein stability, and theCLV3expression responds to altered WUS protein levels inhammutants. Thus, HAM proteins non‐cell autonomously regulatesCLV3expression. 
    more » « less
  4. SUMMARY Stem cells in plant shoots are a rare population of cells that produce leaves, fruits and seeds, vital sources for food and bioethanol. Uncovering regulators expressed in these stem cells will inform crop engineering to boost productivity. Single-cell analysis is a powerful tool for identifying regulators expressed in specific groups of cells. However, accessing plant shoot stem cells is challenging. Recent single-cell analyses of plant shoots have not captured these cells, and failed to detect stem cell regulators likeCLAVATA3andWUSCHEL. In this study, we finely dissected stem cell-enriched shoot tissues from both maize and arabidopsis for single-cell RNA-seq profiling. We optimized protocols to efficiently recover thousands ofCLAVATA3andWUSCHELexpressed cells. A cross-species comparison identified conserved stem cell regulators between maize and arabidopsis. We also performed single-cell RNA-seq on maize stem cell overproliferation mutants to find additional candidate regulators. Expression of candidate stem cell genes was validated using spatial transcriptomics, and we functionally confirmed roles in shoot development. These candidates include a family of ribosome-associated RNA-binding proteins, and two families of sugar kinase genes related to hypoxia signaling and cytokinin hormone homeostasis. These large-scale single-cell profiling of stem cells provide a resource for mining stem cell regulators, which show significant association with yield traits. Overall, our discoveries advance the understanding of shoot development and open avenues for manipulating diverse crops to enhance food and energy security. 
    more » « less
  5. Abstract An early event in plant organogenesis is establishment of a boundary between the stem cell containing meristem and differentiating lateral organ. In maize (Zea mays), evidence suggests a common gene network functions at boundaries of distinct organs and contributes to pleiotropy between leaf angle and tassel branch number, two agronomic traits. To uncover regulatory variation at the nexus of these two traits, we use regulatory network topologies derived from specific developmental contexts to guide multivariate genome-wide association analyses. In addition to defining network plasticity around core pleiotropic loci, we identify new transcription factors that contribute to phenotypic variation in canopy architecture, and structural variation that contributes tocis-regulatory control of pleiotropy between tassel branching and leaf angle across maize diversity. Results demonstrate the power of informing statistical genetics with context-specific developmental networks to pinpoint pleiotropic loci and theircis-regulatory components, which can be used to fine-tune plant architecture for crop improvement. 
    more » « less