The deep sea contains a surprising diversity of life, including iconic fish groups such as anglerfishes and lanternfishes. Still, >65% of marine teleost fish species are restricted to the photic zone <200 m, which comprises less than 10% of the ocean’s total volume. From a macroevolutionary perspective, this paradox may be explained by three hypotheses: 1) shallow water lineages have had more time to diversify than deep-sea lineages, 2) shallow water lineages have faster rates of speciation than deep-sea lineages, or 3) shallow-to-deep sea transition rates limit deep-sea richness. Here we use phylogenetic comparative methods to test among these three non-mutually exclusive hypotheses. While we found support for all hypotheses, the disparity in species richness is better described as the uneven outcome of alternating phases that favored shallow or deep diversification over the past 200 million y. Shallow marine teleosts became incredibly diverse 100 million y ago during a period of warm temperatures and high sea level, suggesting the importance of reefs and epicontinental settings. Conversely, deep-sea colonization and speciation was favored during brief episodes when cooling temperatures increased the efficiency of the ocean’s carbon pump. Finally, time-variable ecological filters limited shallow-to-deep colonization for much of teleost history, which helped maintain higher shallow richness. A pelagic lifestyle and large jaws were associated with early deep-sea colonists, while a demersal lifestyle and a tapered body plan were typical of later colonists. Therefore, we also suggest that some hallmark characteristics of deep-sea fishes evolved prior to colonizing the deep sea. 
                        more » 
                        « less   
                    
                            
                            An approach using ddRADseq and machine learning for understanding speciation in Antarctic Antarctophilinidae gastropods
                        
                    
    
            Abstract Sampling impediments and paucity of suitable material for molecular analyses have precluded the study of speciation and radiation of deep-sea species in Antarctica. We analyzed barcodes together with genome-wide single nucleotide polymorphisms obtained from double digestion restriction site-associated DNA sequencing (ddRADseq) for species in the family Antarctophilinidae. We also reevaluated the fossil record associated with this taxon to provide further insights into the origin of the group. Novel approaches to identify distinctive genetic lineages, including unsupervised machine learning variational autoencoder plots, were used to establish species hypothesis frameworks. In this sense, three undescribed species and a complex of cryptic species were identified, suggesting allopatric speciation connected to geographic or bathymetric isolation. We further observed that the shallow waters around the Scotia Arc and on the continental shelf in the Weddell Sea present high endemism and diversity. In contrast, likely due to the glacial pressure during the Cenozoic, a deep-sea group with fewer species emerged expanding over great areas in the South-Atlantic Antarctic Ridge. Our study agrees on how diachronic paleoclimatic and current environmental factors shaped Antarctic communities both at the shallow and deep-sea levels, promoting Antarctica as the center of origin for numerous taxa such as gastropod mollusks. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1754278
- PAR ID:
- 10225958
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Over the last half of the 20 th century, the western Antarctic Peninsula has been one of the most rapidly warming regions on Earth, leading to substantial reductions in regional sea ice coverage. These changes are modulated by atmospheric forcing, including the Amundsen Sea Low (ASL) pressure system. We utilized a novel 25-year (1993–2017) time series to model the effects of environmental variability on larvae of a keystone species, the Antarctic Silverfish ( Pleuragramma antarctica ). Antarctic Silverfish use sea ice as spawning habitat and are important prey for penguins and other predators. We show that warmer sea surface temperature and decreased sea ice are associated with reduced larval abundance. Variability in the ASL modulates both sea surface temperature and sea ice; a strong ASL is associated with reduced larvae. These findings support a narrow sea ice and temperature tolerance for adult and larval fish. Further regional warming predicted to occur during the 21st century could displace populations of Antarctic Silverfish, altering this pelagic ecosystem.more » « less
- 
            null (Ed.)One of the most fundamental changes predicted to occur under warming scenarios for Antarctica is the invasion of durophagous (shell-breaking or peeling) predators—like decapod crustaceans—which were last common in Antarctic waters during the warmer Eocene Period, over 30 million years ago. Since then, Antarctica’s shallow-water benthos developed Paleo- zoic (or deep-sea-like) ecosystems dominated by epi- benthic echinoderms. Despite the looming predatory carnage, little is known about how predators structure shallow subtidal communities in Antarctica, especially in regard to predation on shelled prey. We therefore need to have a baseline of shell repair—if it occurs— prior to the initial invasion of crabs. Here, we assess whether the shell of the Antarctic Scallop, Adamussium colbecki, living in the shallow subtidal under sea ice, records an ontogenetic history of shell repair. Shells of A. colbecki(n=623 valves; ~ 0.50 mm thick) were collected from shallow depths (6–24 m) within western McMurdo Sound, Ross Sea, from the coldest waters on Earth (-1.97 °C): Four sites in Explorers Cove (EC) with semi-permanent (decadal or more) sea ice and a Ferrar Glacier site (located ~30 km south of EC) with annual sea ice and icebergs. All sites were composed of fine sediments interspersed with glacial erratics that were more common at Ferrar than EC. Ju- venile (≤ 50 mm) and adult portions of the shells were examined under a dissecting scope for shell repair. Results indicate that repair did occur and was consistent with predatory damage: 1) valves had ste- reotypic damage patterns, both in style and spatial distribution; 2) there were five styles of repair rang- ing from typical crab-like (jagged) repair to elongate repair; 3) scallops living under ice scour regimes (Ferrar) did not have significantly different repair frequencies than those living under semi-permanent sea ice (EC sites); and 4) none of the shells had shell repair consistent with ice scour as described previ- ously for Laternula elliptica, an Antarctic burrowing bivalve. Frequency of repair varied between 0.04 and 0.26 for the five sites and depths (mean 0.10) and adults had the highest frequency of repair. The mean repair frequency is similar to infaunal Laternulafrom other semi-permanent sea ice sites in McMurdo Sound, but higher than those reported for epifaunal brachio- pods from the Antarctic Peninsula where ice scour does occur. We posit that shell repair can be used as an indicator of durophagy in Antarctica: The forensic agents are unexpectedly sea stars and possibly fish. In a warming world, this scallop may not survive long withboth an increase in ice scour and the putative ar- rival of shell-breaking crabs at ~1 °C.more » « less
- 
            Abstract Since the middle of the past century, the Western Antarctic Peninsula has warmed rapidly with a significant loss of sea ice but the impacts on plankton biodiversity and carbon cycling remain an open question. Here, using a 5-year dataset of eukaryotic plankton DNA metabarcoding, we assess changes in biodiversity and net community production in this region. Our results show that sea-ice extent is a dominant factor influencing eukaryotic plankton community composition, biodiversity, and net community production. Species richness and evenness decline with an increase in sea surface temperature (SST). In regions with low SST and shallow mixed layers, the community was dominated by a diverse assemblage of diatoms and dinoflagellates. Conversely, less diverse plankton assemblages were observed in waters with higher SST and/or deep mixed layers when sea ice extent was lower. A genetic programming machine-learning model explained up to 80% of the net community production variability at the Western Antarctic Peninsula. Among the biological explanatory variables, the sea-ice environment associated plankton assemblage is the best predictor of net community production. We conclude that eukaryotic plankton diversity and carbon cycling at the Western Antarctic Peninsula are strongly linked to sea-ice conditions.more » « less
- 
            Abstract AimThe long history of isolation of the Antarctic continent, coupled with the harsh ecological conditions of freezing temperatures, could affect the patterns of genetic diversity in the organisms living there. We aim (a) to test whether such pattern can be seen in a mitochondrial marker of bdelloid rotifers, a group of microscopic aquatic and limno‐terrestrial animals and (b) to speculate on the potential mechanisms driving the pattern. LocationFocus on Antarctica. TaxonRotifera Bdelloidea. MethodsWe analysed different metrics of genetic diversity, also spatially explicit ones, including number of haplotypes, accumulation curves, genetic distances, time to the most recent common ancestor, number of independently evolving units from DNA taxonomy, strength of the correlation between geographical and genetic distances, population genetics neutrality and differentiation indices, potential historical processes, obtained from an extensive sample of cytochrome oxidase subunit I (COI) sequences obtained from bdelloid rotifers. We included 2242 individuals from 23 species in a comparison between Antarctic and non‐Antarctic taxa, correcting for sample size directly in the analyses and then by confirming the results also using only a restricted dataset of nine well‐sampled species. ResultsAntarctic species had consistently lower genetic diversity and potential younger relative age than non‐Antarctic species, even if they were similar in sample size, geographical extent, neutrality and differentiation indices, and correlation between genetic and geographical distances. Main conclusionsThe extensive survey of genetic diversity in one mitochondrial marker in Antarctic bdelloids supports previous suggestions from other organisms that the origin and maintenance of terrestrial Antarctic fauna are different from those of other continents. Such differences could be speculated to be due, in the case of bdelloid rotifers, to the more recent origin of the species living there in comparison to non‐Antarctic species.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
