skip to main content

Title: Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy
The Cantor high-entropy alloy (HEA) of CrMnFeCoNi is a solid solution with a face-centered cubic structure. While plastic deformation in this alloy is usually dominated by dislocation slip and deformation twinning, our in situ straining transmission electron microscopy (TEM) experiments reveal a crystalline-to-amorphous phase transformation in an ultrafine-grained Cantor alloy. We find that the crack-tip structural evolution involves a sequence of formation of the crystalline, lamellar, spotted, and amorphous patterns, which represent different proportions and organizations of the crystalline and amorphous phases. Such solid-state amorphization stems from both the high lattice friction and high grain boundary resistance to dislocation glide in ultrafine-grained microstructures. The resulting increase of crack-tip dislocation densities promotes the buildup of high stresses for triggering the crystalline-to-amorphous transformation. We also observe the formation of amorphous nanobridges in the crack wake. These amorphization processes dissipate strain energies, thereby providing effective toughening mechanisms for HEAs.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Catastrophic accidents caused by fatigue failures often occur in engineering structures. Thus, a fundamental understanding of cyclic-deformation and fatigue-failure mechanisms is critical for the development of fatigue-resistant structural materials. Here we report a high-entropy alloy with enhanced fatigue life by ductile-transformable multicomponent B2 precipitates. Its cyclic-deformation mechanisms are revealed by real-time in-situ neutron diffraction, transmission-electron microscopy, crystal-plasticity modeling, and Monte-Carlo simulations. Multiple cyclic-deformation mechanisms, including dislocation slips, precipitation strengthening, deformation twinning, and reversible martensitic phase transformation, are observed in the studied high-entropy alloy. Its improved fatigue performance at low strain amplitudes, i.e., the high fatigue-crack-initiation resistance, is attributed to the high elasticity, plastic deformability, and martensitic transformation of the B2-strengthening phase. This study shows that fatigue-resistant alloys can be developed by incorporating strengthening ductile-transformable multicomponent intermetallic phases.

    more » « less
  2. Abstract

    Some of ultrafine-grained (UFG) metals including UFG twinning induced plasticity (TWIP) steels have been found to overcome the paradox of strength and ductility in metals benefiting from their unique deformation modes. Here, this study provides insights into the atomistic process of deformation twin nucleation at Σ3{111} twin boundaries, the dominant type of grain boundary in this UFG high manganese TWIP steel. In response to the applied tensile stresses, grain boundary sliding takes place which changes the structure of coherent Σ3{111} twin boundary from atomistically smooth to partly defective. High resolution transmission electron microscopy demonstrates that the formation of disconnection on Σ3{111} twin boundaries is associated with the motion of Shockley partial dislocations on the boundaries. The twin boundary disconnections act as preferential nucleation sites for deformation twin that is a characteristic difference from the coarse-grained counterpart, and is likely correlated with the lethargy of grain interior dislocation activities, frequently seen in UFG metals. The deformation twin nucleation behavior will be discussed based on in-situ TEM deformation experiments and nanoscale strain distribution analyses results.

    more » « less
  3. To understand the mechanism underlying the fast, reversible, phase transformation, information about the atomic structure and defects structures in phase change materials class is key. PCMs are investigated for many applications. These devices are chalcogenide based and use self heating to quickly switch between amorphous and crystalline phases, generating orders of magnitude differences in the electrical resistivity. The main challenges with PCMs have been the large power required to heat above crystallization or melting (for melt-quench amorphization) temperatures and limited reliability due to factors such as resistance drifts of the metastable phases, void formation and elemental segregation upon cycling. Characterization of devices and their unique switching behavior result in distinct material properties affected by the atomic arrangement in the respective phase. TEM is used to study the atomic structure of the metastable crystalline phase. The aim is to correlate the microstructure with results from electrical characterization, building on R vs T measurements on various thicknesses GST thin films. To monitor phase changes in real-time as a function of temperature, thin films are deposited directly onto Protochips carriers. The Protochips heating holders provides controlled temperature changes while imaging in the TEM. These studies can provide insights into how changes occur in the various phase transformations even though the rate of temperature change is much slower than the PCM device operation. Other critical processes such as void formation, grain evolution and the cause of resistance drift can thereby be related to changes in structure and chemistry. Materials characterization is performed using Tecnai F30 and Titan ETEM microscopes, operating at 300kV. Both the microscopes can accept the same Protochips heating holders. The K2 direct electron detector camera equipped with the ETEM allows high-speed video recording (1600 f/s) of structural changes occurring in these materials upon heating and cooling. In this presentation, we will describe the effect of heating thin films of different thickness and composition, the changes in crystallinity and grain size, and how these changes correlate with changes in the electrical properties of the films. We will emphasize that it is always important to use low-dose and/or beam blanking techniques to distinguish changes induced by the beam from those due to the heating or introduction of an electric current. 
    more » « less
  4. Abstract

    Both amorphous and crystalline silicon are ubiquitous materials for electronics, photonics, and microelectromechanical systems. On‐demand control of Si crystallinity is crucial for device manufacturing and to overcome the limitations of current phase‐change materials (PCM) in active photonics. Fast reversible phase transformation in silicon, however, has never been accomplished due to the notorious challenge of amorphization. It is demonstrated that nanostructured Si can function as a PCM, since it can be reversibly crystallized and amorphized under nanosecond laser irradiation with different pulse energies. Reflection probing on a single nanodisk's phase transformations confirms the distinct mechanisms for crystallization and amorphization. The experimental results show that the relaxation time of undercooled silicon at 950 K is 10 ns. The phase change provides a 20% nonvolatile reflectivity modulation within 100 ns and can be repeated over 400 times. It is shown that such transformations are free of deformation upon solidification. Based on the switchable photonic properties in the visible spectrum, proof‐of‐concept experiments of dielectric color displays and dynamic wavefront control are shown. Therefore, nanostructured silicon is proposed as a chemically stable, deformation free, and complementary metal–oxide‐semiconductor compatible (CMOS) PCM for active photonics at visible wavelengths.

    more » « less
  5. In a recent work, we have reported outstanding strength and work hardening exhibited by a metastable high entropy alloy (HEA), Fe42Mn28Co10Cr15Si5 (in at. %), undergoing the strain-induced martensitic transformation from metastable gamma austenite (γ) to stable epsilon martensite (ε). However, the alloy exhibited poor ductility, which was attributed to the presence of the brittle sigma (σ) phase in its microstructure. The present work reports the evolution of microstructure, strength, and ductility of a similar HEA, Fe38.5Mn20Co20Cr15Si5Cu1.5 (in at. %), designed to suppress the formation of σ phase. A cast and then rolled plate of the alloy was processed into four conditions by annealing for 10 and 30 min at 1100 °C and by friction stir processing (FSP) at tool rotation rates of 150 and 400 revolutions per minute (RPM) to facilitate detailed examinations of variable initial grain structures. Neutron diffraction and electron microscopy were employed to characterize the microstructure and texture evolution. The initial materials had variable grain size but nearly 100% γ structure. Diffusionless strain induced γ→ε phase transformation took place under compression with higher rate initially and slower rate at the later stages of deformation, independent on the initial grain size. The transformation facilitated part of plastic strain accommodation and rapid strain hardening owing to a transformation-induced dynamic Hall-Petch-type barrier effect, increase in dislocation density, and texture. The peak strength of nearly 2 GPa was achieved under compression using the structure created by double pass FSP (150 RPM followed by 150 RPM). Remarkably, the tensile elongation exhibited by the alloy was nearly 20% with fracture surfaces featuring a combination of ductile dimples and cleavage. 
    more » « less