ABSTRACT Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum , we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. IMPORTANCE Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies. 
                        more » 
                        « less   
                    
                            
                            The S-phase-induced lncRNA SUNO1 promotes cell proliferation by controlling YAP1/Hippo signaling pathway
                        
                    
    
            Cell cycle is a cellular process that is subject to stringent control. In contrast to the wealth of knowledge of proteins controlling the cell cycle, very little is known about the molecular role of lncRNAs (long noncoding RNAs) in cell-cycle progression. By performing genome-wide transcriptome analyses in cell-cycle-synchronized cells, we observed cell-cycle phase-specific induction of >2000 lncRNAs. Further, we demonstrate that an S-phase-upregulated lncRNA, SUNO1 , facilitates cell-cycle progression by promoting YAP1-mediated gene expression. SUNO1 facilitates the cell-cycle-specific transcription of WTIP , a positive regulator of YAP1, by promoting the co-activator, DDX5-mediated stabilization of RNA polymerase II on chromatin. Finally, elevated SUNO1 levels are associated with poor cancer prognosis and tumorigenicity, implying its pro-survival role. Thus, we demonstrate the role of a S-phase up-regulated lncRNA in cell-cycle progression via modulating the expression of genes controlling cell proliferation. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10226081
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- eLife
- Volume:
- 9
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background: Long non-coding Ribonucleic Acids (lncRNAs) can be localized to different cellular compartments, such as the nuclear and the cytoplasmic regions. Their biological functions are influenced by the region of the cell where they are located. Compared to the vast number of lncRNAs, only a relatively small proportion have annotations regarding their subcellular localization. It would be helpful if those few annotated lncRNAs could be leveraged to develop predictive models for localization of other lncRNAs. Methods: Conventional computational methods use q-mer profiles from lncRNA sequences and train machine learning models such as support vector machines and logistic regression with the profiles. These methods focus on the exact q-mer. Given possible sequence mutations and other uncertainties in genomic sequences and their role in biological function, a consideration of these variabilities might improve our ability to model lncRNAs and their localization. Thus, we build on inexact q-mers and use machine learning/deep learning techniques to study three specific problems in lncRNA subcellular localization, namely, prediction of lncRNA localization using inexact q-mers, the issue of whether lncRNA localization is cell-type-specific, and the notion of switching (lncRNA) genes. Results: We performed our analysis using data on lncRNA localization across 15 cell lines. Our results showed that using inexact q-mers (with q = 6) can improve the lncRNA localization prediction performance compared to using exact q-mers. Further, we showed that lncRNA localization, in general, is not cell-line-specific. We also identified a category of LncRNAs which switch cellular compartments between different cell lines (we call them switching lncRNAs). These switching lncRNAs complicate the problem of predicting lncRNA localization using machine learning models, showing that lncRNA localization is still a major challenge.more » « less
- 
            Long noncoding RNA (lncRNA) plays key roles in tumorigenesis. Misexpression of lncRNA can lead to changes in expression profiles of various target genes, which are involved in cancer initiation and progression. So, identifying key lncRNAs for a cancer would help develop the cancer therapy. Usually, to identify key lncRNAs for a cancer, expression profiles of lncRNAs for normal and cancer samples are required. But, this kind of data are not available for all cancers. In the present study, a computational framework is developed to identify cancer specific key lncRNAs using the lncRNA expression of cancer patients only. The framework consists of two state-of-the-art feature selection techniques - Recursive Feature Elimination (RFE) and Least Absolute Shrinkage and Selection Operator (LASSO); and five machine learning models - Naive Bayes, K-Nearest Neighbor, Random Forest, Support Vector Machine, and Deep Neural Network. For experiment, expression values of lncRNAs for 8 cancers - BLCA, CESC, COAD, HNSC, KIRP, LGG, LIHC, and LUAD - from TCGA are used. The combined dataset consists of 3,656 patients with expression values of 12,309 lncRNAs. Important features or key lncRNAs are identified by using feature selection algorithms RFE and LASSO. Capability of these key lncRNAs in classifying 8 different cancers is checked by the performance of five classification models. This study identified 37 key lncRNAs that can classify 8 different cancer types with an accuracy ranging from 94% to 97%. Finally, survival analysis supports that the discovered key lncRNAs are capable of differentiating between high-risk and low-risk patients.more » « less
- 
            Sphingosine kinase 1 (SPHK1) and the sphingosine-1-phosphate (S1P) signaling pathway have been shown to play a role in pulmonary arterial hypertension (PAH). S1P is an important stimulus for pulmonary artery smooth muscle cell (PASMC) proliferation and pulmonary vascular remodeling. We aimed to examine the specific roles of SPHK1 in PASMCs during pulmonary hypertension (PH) progression. We generated smooth muscle cell-specific, Sphk1-deficient (Sphk1f/f TaglnCre+) mice and isolated Sphk1-deficient PASMCs from SPHK1 knockout mice. We demonstrated that Sphk1f/f TaglnCre+ mice are protected from hypoxia or hypoxia/Sugen-mediated PH, and pulmonary vascular remodeling and that Sphk1-deficient PASMCs are less proliferative compared with ones isolated from wild-type (WT) siblings. S1P or hypoxia activated yes-associated protein 1 (YAP1) signaling by enhancing its translocation to the nucleus, which was dependent on SPHK1 enzymatic activity. Further, verteporfin, a pharmacologic YAP1 inhibitor, attenuated the S1P-mediated proliferation of hPASMCs, hypoxia-mediated PH, and pulmonary vascular remodeling in mice and hypoxia/Sugen-mediated severe PH in rats. Smooth muscle cell-specific SPHK1 plays an essential role in PH via YAP1 signaling, and YAP1 inhibition may have therapeutic potential in treating PH.more » « less
- 
            The transcriptional coactivator YAP1 (yes-associated protein 1) is a critical nuclear effector of the Hippo pathway. The serine/threonine protein kinases STK3/4 and LATS1/2, core components of the Hippo pathway, phosphorylate and inhibit YAP1 nuclear localization. Previously, we reported that the interaction of nuclear YAP1 with androgen receptor (AR) might play a critical role in prostate cancer progression and therapeutic relapse (Kuser-Abali et al., Nat. Commun. 2015). Here, we investigated the regulation of YAP1 by androgens in isogenic, androgen-responsive LNCaP and androgen non-responsive C4-2 prostate cancer cell models. We demonstrated that androgen suppressed the inhibitory phospho-Ser127 site on YAP1 in LNCaP cells, but the effects of androgen on phospho-Ser127 was modest in C4-2 cells. In agreement with this observation, androgen increased the presence of nuclear YAP1 in LNCaP cells, whereas regardless of androgen exposure the YAP1 protein was primarily expressed in C4-2 cell nuclei. We also demonstrated that androgen exposure suppressed the levels of phospho-Ser127 induced by okadaic acid, which is a potent inhibitor of the Ser/Thr phosphatases PP1 and PP2A. Moreover, the pharmacological inhibition of androgen receptor (AR) signaling by enzalutamide reversed the inhibitory effects of androgen on phospho-Ser127, which coincided with the inhibition of YAP1 nuclear localization. Similarly, the genetic inhibition of AR signaling by small interfering RNA (siRNA) reduced phospho-Ser127 levels. Additionally, the silencing of the STK3/4 and LATS1/2 signaling by siRNA resulted in increases in YAP1 protein levels. Furthermore, our analysis of the TCGA (The Cancer Genome Atlas) prostate adenocarcinoma data set indicates that the levels of YAP1 and AR mRNA expression were positively correlated in prostate cancer clinical samples. These observations suggest that AR signaling promotes YAP1 nuclear localization by suppressing phospho-Ser127, possibly through the protein phosphatases PP1 and PP2A, and supporting a new mechanism of YAP1 regulation and YAP1-mediated cancer cell growth and survival.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    