skip to main content

Title: Decrease in sulfate aerosol light backscattering by reactive uptake of isoprene epoxydiols
Sulfate aerosol is responsible for a net cooling of the Earth's atmosphere due to its ability to backscatter light. Through atmospheric multiphase chemistry, it reacts with isoprene epoxydiols leading to the formation of aerosol and organic compounds, including organosulfates and high-molecular weight compounds. In this study, we evaluate how sulfate aerosol light backscattering is modified in the presence of such organic compounds. Our laboratory experiments show that reactive uptake of isoprene epoxydiols on sulfate aerosol is responsible for a decrease in light backscattering compared to pure inorganic sulfate particles of up to – 12% at 355 nm wavelength and – 21% at 532 nm wavelength. Moreover, while such chemistry is known to yield a core–shell structure, the observed reduction in the backscattered light intensity is discussed with Mie core–shell light backscattering numerical simulations. We showed that the observed decrease can only be explained by considering effects from the complex optical refractive index. Since isoprene is the most abundant hydrocarbon emitted into the atmosphere, and isoprene epoxydiols are the most important isoprene secondary organic aerosol precursors, our laboratory findings can aid in quantifying the direct radiative forcing of sulfates in the presence of organic compounds, thus more clearly resolving the impact more » of such aerosol particles on the Earth's climate. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1703535
Publication Date:
NSF-PAR ID:
10226171
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
10
Page Range or eLocation-ID:
5927 to 5935
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. In isoprene‐rich regions, acid‐catalyzed multiphase reactions of isoprene epoxydiols (IEPOX) with inorganic sulfate (Sulfinorg) particles form secondary organic aerosol (IEPOX‐SOA), extensively converting Sulfinorg to lowervolatility particulate organosulfates (OSs), including 2‐ methyltetrol sulfates (2‐MTSs) and their dimers. Recently, we showed that heterogeneous hydroxyl radical (OH) oxidation of particulate 2‐MTSs generated multifunctional OS products. However, atmospheric models assume that OS‐rich IEPOX‐SOA particles remain unreactive towards heterogeneous OH oxidation, and limited laboratory studies have been conducted to examine the heterogeneous OH oxidation kinetics of full IEPOX‐SOA mixtures. Hence, this study investigated the kinetics and products resulting from heterogeneous OH oxidation of freshly‐generated IEPOXSOA in order to help derive model‐ready parameterizations. First, gas‐phase IEPOX was reacted with acidic Sulfinorg particles under dark conditions in order to form fresh IEPOX‐SOA particles. These particles were then subsequently aged at RH of 56% in an oxidation flow reactor at OH exposures ranging from 0~15 days of equivalent atmospheric exposure. Aged IEPOX‐SOA particles were sampled by an online aerosol chemical speciation monitor (ACSM) and collected onto Teflon filters for off‐line molecular‐level chemical analyses by hydrophilic liquid interaction chromatography method interfaced to electrospray ionization high‐resolution quadrupole time‐offlight mass spectrometry (HILIC/ESI‐HR‐QTOFMS). Our results show that heterogeneous OH oxidation only causedmore »a 7% decay of IEPOX‐SOA by 10 days exposure, likely owing to the inhibition of reactive uptake of OH as fresh IEPOXSOA particles have an inorganic core‐organic shell morphology. A significantly higher fraction of IEPOX‐SOA (~37%) decayed by 15 days exposure, likely due to the increasing reactive uptake of OH as IEPOX‐SOA become more liquid‐like with aging. Freshly‐generated IEPOX‐SOA constituents exhibited varying degrees of aging with 2‐MTSdimers being the most reactive, followed by 2‐MTSs and 2‐ methyltetrols (2‐MTs), respectively. Notably, extensive amounts of previously characterized particle‐phase products in ambient fine aerosols were detected in our laboratory‐aged IEPOX‐SOA samples.« less
  2. Abstract. Atmospheric aerosols are a significant public health hazard and havesubstantial impacts on the climate. Secondary organic aerosols (SOAs) havebeen shown to phase separate into a highly viscous organic outer layersurrounding an aqueous core. This phase separation can decrease thepartitioning of semi-volatile and low-volatile species to the organic phaseand alter the extent of acid-catalyzed reactions in the aqueous core. A newalgorithm that can determine SOA phase separation based on their glasstransition temperature (Tg), oxygen to carbon (O:C) ratio and organic massto sulfate ratio, and meteorological conditions was implemented into theCommunity Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 andwas used to simulate the conditions in the continental United States for thesummer of 2013. SOA formed at the ground/surface level was predicted to bephase separated with core–shell morphology, i.e., aqueous inorganic coresurrounded by organic coating 65.4 % of the time during the 2013 SouthernOxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeasternUnited States. Our estimate is in proximity to the previously reported∼70 % in literature. The phase states of organic coatingsswitched between semi-solid and liquid states, depending on theenvironmental conditions. The semi-solid shell occurring with lower aerosolliquid water content (western United States and at higher altitudes) has aviscosity that was predicted tomore »be 102–1012 Pa s, whichresulted in organic mass being decreased due to diffusion limitation.Organic aerosol was primarily liquid where aerosol liquid water was dominant(eastern United States and at the surface), with a viscosity <102 Pa s.Phase separation while in a liquid phase state, i.e.,liquid–liquid phase separation (LLPS), also reduces reactive uptake ratesrelative to homogeneous internally mixed liquid morphology but was lowerthan aerosols with a thick viscous organic shell. The sensitivity casesperformed with different phase-separation parameterization and dissolutionrate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can havevarying impact on fine particulate matter (PM2.5) organic mass, interms of bias and error compared to field data collected during the 2013 SOAS.This highlights the need to better constrain the parameters thatgovern phase state and morphology of SOA, as well as expand mechanisticrepresentation of multiphase chemistry for non-IEPOX SOA formation in modelsaided by novel experimental insights.« less
  3. Secondary organic aerosol (SOA) is a significant component of atmospheric fine particulate matter (PM2.5) globally that can form through multiphase chemistry of oxidized volatile organic compounds (VOC) leading to lower‐volatility particulate species. Condensed phase reactions of certain SOA constituents with inorganic sulfate derived from SO2 oxidation will lead to the formation of organosulfates, which can account for up to 10 – 15% of the organic mass within PM2.5. Despite the ubiquitous presence of atmospheric fine particulate organosulfates, our fundamental understanding of the molecular structure of organosulfates is limited, including for 2‐methyltetrol organosulfates (2‐MTSs), which are typically the single most abundant organosulfates measured in PM2.5, formed from isoprene oxidation products. As atmospheric aerosol pH varies widely (0 – 6), it is important to know whether organosulfates exist primarily in their protonated (ROSO3H) or deprotonated (ROSO3 ‐) forms. In this study, vibrational modes of synthetically‐pure 2‐MTSs were spectroscopically probed using Raman and infrared (IR) spectroscopies, supported by density functional theory (DFT) of the protonated and deprotonated structures. Vibrational bands at 1035 and 1059 cm‐1 were seen in both the IR and Raman spectra, and were associated with the ROSO3 ‐ anion by comparison to DFT calculations. Analysis of Raman spectra across amore »range of acidities (pH = 0 – 10) shows that 2‐MTSs are deprotonated (ROSO3 ‐) at those pH values. Additional DFT calculations for organosulfates derived from isoprene, α‐pinene, β‐caryophyllene, and toluene suggest that most organosulfates exist in their deprotonated form (ROSO3 ‐) in atmospheric particles. These charged species may have significant implications for our understanding of aerosol acidity and should be considered in thermodynamic model calculations.« less
  4. Abstract. Biogenic organic precursors play an important role inatmospheric new particle formation (NPF). One of the major precursor speciesis α-pinene, which upon oxidation can form a suite of productscovering a wide range of volatilities. Highly oxygenated organic molecules(HOMs) comprise a fraction of the oxidation products formed. While it isknown that HOMs contribute to secondary organic aerosol (SOA) formation,including NPF, they have not been well studied in newly formed particles dueto their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures(−50 and −30 ∘C) and relativehumidities (20 % and 60 %) relevant in the upper free troposphere. Themeasurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD)chamber. The particle chemical composition was analyzed by a thermaldesorption differential mobility analyzer (TD-DMA) coupled to a nitratechemical ionization–atmospheric pressure interface–time-of-flight(CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Ourmeasurements revealed the presence of C8−10 monomers and C18−20dimers as the major compounds in the particles (diameter up to∼ 100 nm). Particularly, for the system with isoprene added,C5 (C5H10O5−7) and C15 compounds(C15H24O5−10) were detected. This observation is consistentwith the previously observed formation ofmore »such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate,our measurements indicate that they can still contribute to the particlegrowth at free tropospheric conditions. For the experiments reported here,most likely isoprene oxidation products enhance the growth of particleslarger than 15 nm. Additionally, we report on the nucleation rates measuredat 1.7 nm (J1.7 nm) and compared with previous studies, we found lowerJ1.7 nm values, very likely due to the higher α-pinene andozone mixing ratios used in the present study.« less
  5. Acid-catalyzed multiphase chemistry of isoprene epoxydiols (IEPOX) on sulfate aerosol produces substantial amounts of water-soluble secondary organic aerosol (SOA) constituents, including 2-methyltetrols, methyltetrol sulfates, and oligomers thereof in atmospheric fine particulate matter (PM 2.5 ). These constituents have commonly been measured by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) with prior derivatization or by reverse-phase liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry (RPLC/ESI-HR-MS). However, both techniques have limitations in explicitly resolving and quantifying polar SOA constituents due either to thermal degradation or poor separation. With authentic 2-methyltetrol and methyltetrol sulfate standards synthesized in-house, we developed a hydrophilic interaction liquid chromatography (HILIC)/ESI-HR-quadrupole time-of-flight mass spectrometry (QTOFMS) protocol that can chromatographically resolve and accurately measure the major IEPOX-derived SOA constituents in both laboratory-generated SOA and atmospheric PM 2.5 . 2-Methyltetrols were simultaneously resolved along with 4–6 diastereomers of methyltetrol sulfate, allowing efficient quantification of both major classes of SOA constituents by a single non-thermal analytical method. The sum of 2-methyltetrols and methyltetrol sulfates accounted for approximately 92%, 62%, and 21% of the laboratory-generated β-IEPOX aerosol mass, laboratory-generated δ-IEPOX aerosol mass, and organic aerosol mass in the southeastern U.S., respectively, where the mass concentration of methyltetrol sulfates was 171–271%more »the mass concentration of methyltetrol. Mass concentrations of methyltetrol sulfates were 0.39 and 2.33 μg m −3 in a PM 2.5 sample collected from central Amazonia and the southeastern U.S., respectively. The improved resolution clearly reveals isomeric patterns specific to methyltetrol sulfates from acid-catalyzed multiphase chemistry of β- and δ-IEPOX. We also demonstrate that conventional GC/EI-MS analyses overestimate 2-methyltetrols by up to 188%, resulting (in part) from the thermal degradation of methyltetrol sulfates. Lastly, C 5 -alkene triols and 3-methyltetrahydrofuran-3,4-diols are found to be largely GC/EI-MS artifacts formed from thermal degradation of 2-methyltetrol sulfates and 3-methyletrol sulfates, respectively, and are not detected with HILIC/ESI-HR-QTOFMS.« less