skip to main content


Title: Frenkel defects promote polaronic exciton dissociation in methylammonium lead iodide perovskites
Hybrid organic–inorganic perovskite materials, such as CH 3 NH 3 PbI 3 , exhibit substantial potential in a variety of optoelectronic applications. Nevertheless, the interplay between the photoinduced excitations and iodine Frenkel defects which are abundant in CH 3 NH 3 PbI 3 films remains poorly understood. Here we study the light-triggered electronic and excitonic properties in the presence of iodine Frenkel defects in CH 3 NH 3 PbI 3 by using a combination of density functional theory (DFT) and time-dependent DFT approaches, the latter of which treats electron–hole and electron–nucleus interactions on the same footing. For isolated Frenkel defects, electrons are trapped close to the iodine vacancies and the electron–hole correlation brings the holes in close vicinity to the electrons, yielding tightly bound polaronic excitons. However, in the presence of multiple interactive Frenkel defects, the holes are pulled out from an electron–hole Coulomb well by the iodine interstitials, leading to spatially separated electron–hole pairs. The X-ray photoelectron spectra are then simulated, unravelling the light-triggered charge transfer induced by Frenkel defects at the atomistic level. We also find that the energy and spatial distributions of polaronic excitons at the Frenkel defects can be controlled by the dynamical rotation of organic cations.  more » « less
Award ID(s):
1828019
NSF-PAR ID:
10226249
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
11
ISSN:
1463-9076
Page Range / eLocation ID:
6583 to 6590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Given the remarkable performance of hybrid organic–inorganic perovskites (HOIPs) in solar cells, light emitters, and photodetectors, the quest to advance the fundamental understanding of the photophysical properties in this class of materials remains highly relevant. Recently, the discovery of ferroic twin domains in HOIPs has renewed the debate of the ferroic effects on optoelectric processes. This work explores the interaction between light and ferroic twin domains in CH3NH3PbI3. Due to strain and chemical inhomogeneities, photogenerated electrons and holes show a preferential motion in the ferroelastic twin domains. Density functional theory (DFT) shows that electrons and holes result in lattice expansion in CH3NH3PbI3differently. Hence, light generates strain in the ferroelastic domains due to preferential photocarrier motion, leading to a screening of strain variation. X‐ray diffraction studies verify the DFT simulations and reveal that the photoinduced strain is light intensity dependent, and the photoexcitation is a prerequisite of inducing strain by light. This work extends the fundamental understanding of light‐ferroic interaction and offers guidance for developing functional devices.

     
    more » « less
  2. Abstract

    The simplest picture of excitons in materials with atomic-like localization of electrons is that of Frenkel excitons, where electrons and holes stay close together, which is associated with a large binding energy. Here, using the example of the layered oxide V2O5, we show how localized charge-transfer excitations combine to form excitons that also have a huge binding energy but, at the same time, a large electron-hole distance, and we explain this seemingly contradictory finding. The anisotropy of the exciton delocalization is determined by the local anisotropy of the structure, whereas the exciton extends orthogonally to the chains formed by the crystal structure. Moreover, we show that the bright exciton goes together with a dark exciton of even larger binding energy and more pronounced anisotropy. These findings are obtained by combining first principles many-body perturbation theory calculations, ellipsometry experiments, and tight binding modelling, leading to very good agreement and a consistent picture. Our explanation is general and can be extended to other materials.

     
    more » « less
  3. Abstract

    Semiconducting molecules have been employed to passivate traps extant in the perovskite film for enhancement of perovskite solar cells (PSCs) efficiency and stability. A molecular design strategy to passivate the defects both on the surface and interior of the CH3NH3PbI3perovskite layer, using two phthalocyanine (Pc) molecules (NP‐SC6‐ZnPc andNP‐SC6‐TiOPc) is demonstrated. The presence of lone electron pairs on S, N, and O atoms of the Pc molecular structures provides the opportunity for Lewis acid–base interactions with under‐coordinated Pb2+sites, leading to efficient defect passivation of the perovskite layer. The tendency of bothNP‐SC6‐ZnPc andNP‐SC6‐TiOPc to relax on the PbI2terminated surface of the perovskite layer is also studied using density functional theory (DFT) calculations. The morphology of the perovskite layer is improved due to employing the Pc passivation strategy, resulting in high‐quality thin films with a dense and compact structure and lower surface roughness. UsingNP‐SC6‐ZnPc andNP‐SC6‐TiOPc as passivating agents, it is observed considerably enhanced power conversion efficiencies (PCEs), from 17.67% for the PSCs based on the pristine perovskite film to 19.39% forNP‐SC6‐TiOPc passivated devices. Moreover, PSCs fabricated based on the Pc passivation method present a remarkable stability under conditions of high moisture and temperature levels.

     
    more » « less
  4. The organic metal halide perovskite material is capable of high throughput manufacturing via traditional deposition processes used in roll-to-roll, yet thermal annealing post deposition may require long ovens. We report rapid annealed perovskite thin films using intense pulsed light (IPL) to initiate a radiative thermal response that is enabled by an alkyl halide additive that collectively improves the performance of a device processed in an ambient environment from a baseline of 10 to 16.5% efficiency. Previous reports on CH 3 NH 3 PbI 3 perovskite films using IPL processing achieved functional devices in milli-second time scales and are promising for high throughput manufacturing processes under ambient conditions. In this study, we found that the addition of diiodomethane (CH 2 I 2 ) as an additive to the methylammonium iodide (MAI)/lead iodide (PbI 2 ) precursor ink chemistry and subsequent IPL thermal annealing are inter-dependent. The concentration of CH 2 I 2 and IPL processing parameters have a direct effect on the surface morphology of the films and performance within a perovskite solar cell (PSC). The CH 2 I 2 dissociates under exposure to ultraviolet (UV) radiation from the IPL source liberating iodine ions in the film, influencing the perovskite formation and reducing the defect states. We anticipate that these results can be utilized to further develop different ink formulations using alkyl halides for the IPL technique to improve the performance of perovskite solar cells processed in ambient conditions. 
    more » « less
  5. Photoactive organic and hybrid organic–inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure–photophysics–property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron–hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct – the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications. 
    more » « less