skip to main content


Title: Towards a geometric approach to Strassen’s asymptotic rank conjecture
We make a first geometric study of three varieties inCm⊗Cm⊗Cm (for eachm), including the Zariski closure of the set of tight tensors, the tensors with continuous regular symmetry. Our motivation is to develop a geometric framework for Strassen’s asymptotic rank conjecture that the asymptotic rank of any tight tensor is minimal. In particular, we determine the dimension of the set of tight tensors. We prove that this dimension equals the dimension of the set of oblique tensors, a less restrictive class introduced by Strassen.  more » « less
Award ID(s):
1814254
NSF-PAR ID:
10226259
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Collectanea mathematica
Volume:
72
Issue:
1
ISSN:
2038-4815
Page Range / eLocation ID:
63–86
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by problems in algebraic complexity theory (e.g., matrix multiplication) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the subrank of tensors and the independence number of hypergraphs. We prove that the geometric rank is smaller than the slice rank of Tao, and relate geometric rank to the analytic rank of Gowers and Wolf in an asymptotic fashion. As a first application, we use geometric rank to prove a tight upper bound on the (border) subrank of the matrix multiplication tensors, matching Strassen's well-known lower bound from 1987. 
    more » « less
  2. We determine defining equations for the set of concise tensors of minimal border rank in Cm⊗Cm⊗Cm when m = 5 and the set of concise minimal border rank 1∗-generic tensors when m = 5, 6. We solve the classical problem in algebraic complexity theory of classifying minimal border rank tensors in the special case m = 5. Our proofs utilize two recent developments: the 111-equations defined by Buczy´nska–Buczy´nski and results of Jelisiejew–Šivic on the variety of commuting matrices. We introduce a new algebraic invariant of a concise tensor, its 111-algebra, and exploit it to give a strengthening of Friedland’s normal form for 1-degenerate tensors satisfying Strassen’s equations. We use the 111-algebra to characterize wild minimal border rank tensors and classify them in C5⊗C5⊗C5. 
    more » « less
  3. In this paper, we develop a novel procedure for low-rank tensor regression, namely Importance Sketching Low-rank Estimation for Tensors (ISLET). The central idea behind ISLET is importance sketching, i.e., carefully designed sketches based on both the responses and low-dimensional structure of the parameter of interest. We show that the proposed method is sharply minimax optimal in terms of the mean-squared error under low-rank Tucker assumptions and under the randomized Gaussian ensemble design. In addition, if a tensor is low-rank with group sparsity, our procedure also achieves minimax optimality. Further, we show through numerical study that ISLET achieves comparable or better mean-squared error performance to existing state-of-the-art methods while having substantial storage and run-time advantages including capabilities for parallel and distributed computing. In particular, our procedure performs reliable estimation with tensors of dimension $p = O(10^8)$ and is 1 or 2 orders of magnitude faster than baseline methods. 
    more » « less
  4. null (Ed.)
    Lightness and sparsity are two natural parameters for Euclidean (1+ε)-spanners. Classical results show that, when the dimension d ∈ ℕ and ε > 0 are constant, every set S of n points in d-space admits an (1+ε)-spanners with O(n) edges and weight proportional to that of the Euclidean MST of S. Tight bounds on the dependence on ε > 0 for constant d ∈ ℕ have been established only recently. Le and Solomon (FOCS 2019) showed that Steiner points can substantially improve the lightness and sparsity of a (1+ε)-spanner. They gave upper bounds of Õ(ε^{-(d+1)/2}) for the minimum lightness in dimensions d ≥ 3, and Õ(ε^{-(d-1))/2}) for the minimum sparsity in d-space for all d ≥ 1. They obtained lower bounds only in the plane (d = 2). Le and Solomon (ESA 2020) also constructed Steiner (1+ε)-spanners of lightness O(ε^{-1}logΔ) in the plane, where Δ ∈ Ω(log n) is the spread of S, defined as the ratio between the maximum and minimum distance between a pair of points. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner (1+ε)-spanners. Using a new geometric analysis, we establish lower bounds of Ω(ε^{-d/2}) for the lightness and Ω(ε^{-(d-1)/2}) for the sparsity of such spanners in Euclidean d-space for all d ≥ 2. We use the geometric insight from our lower bound analysis to construct Steiner (1+ε)-spanners of lightness O(ε^{-1}log n) for n points in Euclidean plane. 
    more » « less
  5. We study the time asymptotic decay of solutions for a general system of hyperbolic–parabolic balance laws in one space dimension. The system has a physical viscosity matrix and a lower-order term for relaxation, damping or chemical reaction. The viscosity matrix and the Jacobian matrix of the lower-order term are rank deficient. For Cauchy problem around a constant equilibrium state, existence of solution global in time has been established recently under a set of reasonable assumptions. In this paper, we obtain optimal [Formula: see text] decay rates for [Formula: see text]. Our result is general and applies to models such as Keller–Segel equations with logarithmic chemotactic sensitivity and logistic growth, and gas flows with translational and vibrational non-equilibrium. Our result also recovers or improves the existing results in literature on the special cases of hyperbolic–parabolic conservation laws and hyperbolic balance laws, respectively. 
    more » « less