skip to main content


Title: Climate Change Leads to a Reduction in Symbiotic Derived Cnidarian Biodiversity on Coral Reefs
Symbiotic relationships enable partners to thrive and survive in habitats where they would either not be as successful, or potentially not exist, without the symbiosis. The coral reef ecosystem, and its immense biodiversity, relies on the symbioses between cnidarians (e.g., scleractinian corals, octocorals, sea anemones, jellyfish) and multiple organisms including dinoflagellate algae (family Symbiodiniaceae), bivalves, crabs, shrimps, and fishes. In this review, we discuss the ramifications of whether coral reef cnidarian symbioses are obligatory, whereby at least one of the partners must be in the symbiosis in order to survive or are facultative. Furthermore, we cover the consequences of cnidarian symbioses exhibiting partner flexibility or fidelity. Fidelity, where a symbiotic partner can only engage in symbiosis with a subset of partners, may be absolute or context dependent. Current literature demonstrates that many cnidarian symbioses are highly obligative and appear to exhibit absolute fidelity. Consequently, for many coral reef cnidarian symbioses, surviving changing environmental conditions will depend on the robustness and potential plasticity of the existing host-symbiont(s) combination. If environmental conditions detrimentally affect even one component of this symbiotic consortium, it may lead to a cascade effect and the collapse of the entire symbiosis. Symbiosis is at the heart of the coral reef ecosystem, its existence, and its high biodiversity. Climate change may cause the demise of some of the cnidarian symbioses, leading to subsequent reduction in biodiversity on coral reefs.  more » « less
Award ID(s):
1839775
NSF-PAR ID:
10226300
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont—the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome—that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian–Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.

     
    more » « less
  2. ABSTRACT

    The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef‐building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross‐kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross‐scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.

     
    more » « less
  3. Mutualistic symbioses between cnidarians and photosynthetic algae are modulated by complex interactions between host immunity and environmental conditions. Here, we investigate how symbiosis interacts with food limitation to influence gene expression and stress response programming in the sea anemoneExaiptasia pallida(Aiptasia). Transcriptomic responses to starvation were similar between symbiotic and aposymbiotic Aiptasia; however, aposymbiotic anemone responses were stronger. Starved Aiptasia of both symbiotic states exhibited increased protein levels of immune-related transcription factor NF-κB, its associated gene pathways, and putative target genes. However, this starvation-induced increase in NF-κB correlated with increased immunity only in symbiotic anemones. Furthermore, starvation had opposite effects on Aiptasia susceptibility to pathogen and oxidative stress challenges, suggesting distinct energetic priorities under food scarce conditions. Finally, when we compared starvation responses in Aiptasia to those of a facultative coral and non-symbiotic anemone, ‘defence’ responses were similarly regulated in Aiptasia and the facultative coral, but not in the non-symbiotic anemone. This pattern suggests that capacity for symbiosis influences immune responses in cnidarians. In summary, expression of certain immune pathways—including NF-κB—does not necessarily predict susceptibility to pathogens, highlighting the complexities of cnidarian immunity and the influence of symbiosis under varying energetic demands.

     
    more » « less
  4. Cooke, Steven (Ed.)
    Abstract Coral reefs are increasingly experiencing stressful conditions, such as high temperatures, that cause corals to undergo bleaching, a process where they lose their photosynthetic algal symbionts. Bleaching threatens both corals’ survival and the health of the reef ecosystems they create. One possible mechanism for corals to resist bleaching is through association with stress-tolerant symbionts, which are resistant to bleaching but may be worse partners in mild conditions. Some corals have been found to associate with multiple symbiont species simultaneously, which potentially gives them access to the benefits of both stress-sensitive and -tolerant symbionts. However, within-host competition between symbionts may lead to competitive exclusion of one partner, and the consequences of associating with multiple partners simultaneously are not well understood. We modify a mechanistic model of coral-algal symbiosis to investigate the effect of environmental conditions on within-host competitive dynamics between stress-sensitive and -tolerant symbionts and the effect of access to a tolerant symbiont on the dynamics of recovery from bleaching. We found that the addition of a tolerant symbiont can increase host survival and recovery from bleaching in high-light conditions. Competitive exclusion of the tolerant symbiont occurred slowly at intermediate light levels. Interestingly, there were some cases of post-bleaching competitive exclusion after the tolerant symbiont had helped the host recover. 
    more » « less
  5. Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR), the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemoneAiptasia pallidathat engages in a symbiosis withSymbiodinium minutum(clade B1). Experimental blocking of the SR ligand binding site with the inhibitor fucoidan reduced the ability ofS. minutumto colonizeA. pallidasuggesting that host SRs play a role in host-symbiont recognition. In addition, incubation of symbiotic anemones with fucoidan elicited an immune response, indicating that host SRs function in immune modulation that results in host tolerance of the symbionts.

     
    more » « less