Modern systems and devices, including unmanned aerial systems (UAS), autonomous vehicles, and other unmanned and autonomous systems, commonly rely on the Global Positioning System (GPS) for positioning, navigation, and timing (PNT). Cellular mobile devices rely on GPS for PNT and location-based services. Many of these systems cannot function correctly without GPS; however, GPS signals are susceptible to a wide variety of signal-related disruptions and cyberattacks. GPS threat detection and mitigation have received significant attention recently. There are many surveys and systematic reviews in the literature related to GPS security; however, many existing reviews only briefly discuss GPS security within a larger discussion of cybersecurity. Other reviews focus on niche topics related to GPS security. There are no existing comprehensive reviews of GPS security issues in the literature. This paper fills that gap by providing a comprehensive treatment of GPS security, with an emphasis on UAS applications. This paper provides an overview of the threats to GPS and the state-of-the-art techniques for attack detection and countermeasures. Detection and mitigation approaches are categorized, and the strengths and weaknesses of existing approaches are identified. This paper also provides a comprehensive overview of the state-of-the-art on alternative positioning and navigation techniques in GPS-disrupted environments, discussing the strengths and weaknesses of existing approaches. Finally, this paper identifies gaps in existing research and future research directions.
more »
« less
Atmospheric pressure loading in GPS positions: dependency on GPS processing methods and effect on assessment of seasonal deformation in the contiguous USA and Alaska
More Like this
-
-
NA (Ed.)Unmanned Aerial Systems have become ubiquitous and are now widely used in commercial, consumer, and military applications. Their widespread use is due to a combination of their low cost, high capability, and ability to perform tasks and go places that are not easy or safe for humans. Most UAS platforms are dependent on Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), to provide positioning information for navigation and flight control. Without reliable GPS signals, the flight path cannot be trusted, and flight safety cannot be assured. However, GPS is vulnerable to several types of malicious attacks, including jamming, spoofing, or physical attacks on the GPS constellation itself. Additionally, there are environments in which GPS reception is not always possible, a key example being urban canyon areas where line-of-site to the GPS satellite constellation may be blocked or obscured by large obstacles such as buildings. Numerous methods have been proposed for position estimation in GPS denied environments. However, these methods have significant limitations and typically exhibit poor performance in certain environments and scenarios. This paper analyzes the strengths and weaknesses of existing alternate positioning methods and describes a framework where multiple positioning solutions are jointly employed to construct an optimal position estimate. The proposed framework aims to reduce computation complexity and yield good positioning performance across a wide variety of environments.more » « less
An official website of the United States government

