The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com , we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
more »
« less
Large-scale recombinant production of the SARS-CoV-2 proteome for high-throughput and structural biology applications
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity, and demands for redirection of scientific efforts and criteria to organized research projects. The international Covid19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in Covid19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalogue of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR-chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope labeled form.
more »
« less
- Award ID(s):
- 2003837
- PAR ID:
- 10226386
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Frontiers in molecular biosciences
- ISSN:
- 2296-889X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract SARS‐CoV‐2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti‐virals. Within the international Covid19‐NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR‐detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure‐based drug design against the SCoV2 proteome.more » « less
-
null (Ed.)Background . New York City (NYC) experienced an initial surge and gradual decline in the number of SARS-CoV-2-confirmed cases in 2020. A change in the pattern of laboratory test results in COVID-19 patients over this time has not been reported or correlated with patient outcome. Methods . We performed a retrospective study of routine laboratory and SARS-CoV-2 RT-PCR test results from 5,785 patients evaluated in a NYC hospital emergency department from March to June employing machine learning analysis. Results . A COVID-19 high-risk laboratory test result profile (COVID19-HRP), consisting of 21 routine blood tests, was identified to characterize the SARS-CoV-2 patients. Approximately half of the SARS-CoV-2 positive patients had the distinct COVID19-HRP that separated them from SARS-CoV-2 negative patients. SARS-CoV-2 patients with the COVID19-HRP had higher SARS-CoV-2 viral loads, determined by cycle threshold values from the RT-PCR, and poorer clinical outcome compared to other positive patients without the COVID12-HRP. Furthermore, the percentage of SARS-CoV-2 patients with the COVID19-HRP has significantly decreased from March/April to May/June. Notably, viral load in the SARS-CoV-2 patients declined, and their laboratory profile became less distinguishable from SARS-CoV-2 negative patients in the later phase. Conclusions . Our longitudinal analysis illustrates the temporal change of laboratory test result profile in SARS-CoV-2 patients and the COVID-19 evolvement in a US epicenter. This analysis could become an important tool in COVID-19 population disease severity tracking and prediction. In addition, this analysis may play an important role in prioritizing high-risk patients, assisting in patient triaging and optimizing the usage of resources.more » « less
-
Abstract SARS-CoV-2 is an RNA enveloped virus responsible for the COVID-19 pandemic that conducted in 6 million deaths worldwide so far. SARS-CoV-2 particles are mainly composed of the 4 main structural proteins M, N, E and S to form 100 nm diameter viral particles. Based on productive assays, we propose an optimal transfected plasmid ratio mimicking the viral RNA ratio in infected cells. This allows SARS-CoV-2 Virus-Like Particle (VLPs) formation composed of the viral structural proteins M, N, E and mature S. Furthermore, fluorescent or photoconvertible VLPs were generated by adding a fluorescent protein tag on N or M mixing with unlabeled viral proteins and characterized by western blots, atomic force microscopy coupled to fluorescence and immuno-spotting. Thanks to live fluorescence and super-resolution microscopies, we quantified VLPs size and concentration. SARS-CoV-2 VLPs present a diameter of 110 and 140 nm respectively for MNE-VLPs and MNES-VLPs with a concentration of 10e12 VLP/ml. In this condition, we were able to establish the incorporation of the Spike in the fluorescent VLPs. Finally, the Spike functionality was assessed by monitoring fluorescent MNES-VLPs docking and internalization in human pulmonary cells expressing or not the receptor hACE2. Results show a preferential maturation of S on N(GFP) labeled VLPs and an hACE2-dependent VLP internalization and a potential fusion in host cells. This work provides new insights on the use of non-fluorescent and fluorescent VLPs to study and visualize the SARS-CoV-2 viral life cycle in a safe environment (BSL-2 instead of BSL-3). Moreover, optimized SARS-CoV-2 VLP production can be further adapted to vaccine design strategies.more » « less
-
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spurred unprecedented and concerted worldwide research to curtail and eradicate this pathogen. SARS-CoV-2 has four structural proteins: Envelope (E), Membrane (M), Nucleocapsid (N), and Spike (S), which self-assemble along with its RNA into the infectious virus by budding from intracellular lipid membranes. In this paper, we develop a model to explore the mechanisms of RNA condensation by structural proteins, protein oligomerization and cellular membrane–protein interactions that control the budding process and the ultimate virus structure. Using molecular dynamics simulations, we have deciphered how the positively charged N proteins interact and condense the very long genomic RNA resulting in its packaging by a lipid envelope decorated with structural proteins inside a host cell. Furthermore, considering the length of RNA and the size of the virus, we find that the intrinsic curvature of M proteins is essential for virus budding. While most current research has focused on the S protein, which is responsible for viral entry, and it has been motivated by the need to develop efficacious vaccines, the development of resistance through mutations in this crucial protein makes it essential to elucidate the details of the viral life cycle to identify other drug targets for future therapy. Our simulations will provide insight into the viral life cycle through the assembly of viral particles de novo and potentially identify therapeutic targets for future drug development.more » « less
An official website of the United States government

