Effect of Nanoplastic Type and Surface Chemistry on Particle Agglomeration over a Salinity Gradient
Abstract Agglomeration of nanoplastics in waters can alter their transport and fate in the environment. Agglomeration behavior of 4 nanoplastics differing in core composition (red- or blue-dyed polystyrene) and surface chemistry (plain or carboxylated poly[methyl methacrylate] [PMMA]) was investigated across a salinity gradient. No agglomeration was observed for carboxylated PMMA at any salinity, whereas the plain PMMA agglomerated at only 1 g/L. Both the red and the blue polystyrene agglomerated at 25 g/L. Results indicate that both composition and surface chemistry can impact how environmental salinity affects plastic nanoparticle agglomeration. Environ Toxicol Chem 2021;40:1820–1826. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Abstract Nanoplastic agglomeration behavior across experimental salinity gradients varies depending on plastic type and surface chemistry. PMMA = poly(methyl methacrylate); PS = polystyrene.
more »
« less
- Award ID(s):
- 1935028
- PAR ID:
- 10226419
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Environmental Toxicology and Chemistry
- Volume:
- 40
- Issue:
- 7
- ISSN:
- 0730-7268
- Format(s):
- Medium: X Size: p. 1820-1826
- Size(s):
- p. 1820-1826
- Sponsoring Org:
- National Science Foundation
More Like this
-
Degradable polymers are crucial in order to reduce plastic environmental pollution and waste accumulation. In this paper, a natural product, tannic acid was modified to be used as a polymer star core. The tannic acid was modified with atom transfer radical polymerization (ATRP) initiators and characterized by 1H NMR, FT-IR, and XPS. Twenty-five arm polymer stars were prepared by photoinduced ATRP of poly(methyl methacrylate) (PMMA) or poly(oligo(ethylene oxide) methacrylate) (molar mass Mw = 300 g/mol) (P(OEO300MA)). The polymer stars were degraded by cleaving the polymer star arms attached to the core by phenolic esters under mild basic conditions. The stars were analyzed before and after degradation by gel permeation chromatography (GPC). Cytotoxicity assays were performed on the P(OEO300MA) stars and corresponding degraded polymers, and were found to be nontoxic at the concentrations tested.more » « less
-
This paper presents a new technique to study the adsorption and desorption of ions and electrons on insulating surfaces in the presence of strong electric fields in cryoliquids. The experimental design consists of a compact cryostat coupled with a sensitive electro-optical Kerr device to monitor the stability of the electric fields. The behavior of nitrogen and helium ions on a poly(methyl methacrylate) (PMMA) surface was compared to a PMMA surface coated with a mixture of deuterated polystyrene and deuterated polybutadiene. Ion accumulation and removal on these surfaces were unambiguously observed. Within the precision of the data, both surfaces behave similarly for the physisorbed ions. The setup was also used to measure the (quasi-)static dielectric constant of PMMA at T ≈ 70 K. The impact of the ion adsorption on the search for a neutron permanent electric dipole moment in a cryogenic environment, such as the nEDM@SNS experiment, is discussed.more » « less
-
Abstract In this work, we develop an environmental-friendly approach to produce organic-inorganic hybrid MAPbBr 3 (MA = CH 3 NH 3 ) perovskite nanocrystals (PeNCs) and PMMA-MAPbBr 3 NC films with excellent compression-resistant PL characteristics. Deionized water is used as the solvent to synthesize MAPbBr 3 powder instead of conventionally-used hazardous organic solvents. The MAPbBr 3 PeNCs derived from the MAPbBr 3 powder exhibit a high photoluminescence quantum yield (PLQY) of 93.86%. Poly(methyl methacrylate) (PMMA)-MAPbBr 3 NC films made from the MAPbBr 3 PeNCs retain ∼97% and ∼91% of initial PL intensity after 720 h aging in ambient environment at 50 °C and 70 °C, respectively. The PMMA-MAPbBr 3 NC films also exhibit compression-resistant photoluminescent characteristics in contrast to the PMMA-CsPbBr 3 NC films under a compressive stress of 1.6 MPa. The PMMA-MAPbBr 3 NC film integrated with a red emissive film and a blue light emitting source achieves an LCD backlight of ∼114% color gamut of National Television System Committee (NTSC) 1953 standard.more » « less
-
Abstract An asymmetric double cantilever beam test was used to determine the ability of carbon nanotubes with varying chemistry along their lengths, that is, diblock nanotubes, to compatibilize the polystyrene/poly(methyl methacrylate) (PS/PMMA) interface. PS molecules were grafted primarily to one of the blocks to cause that block to migrate to the PS phase since otherwise both blocks would prefer to reside in PMMA. Fracture toughnesses increased monotonically with increasing diblock carbon nanotube concentration and maximum values were like those for block copolymer‐reinforced interfaces while single‐chemistry nanotubes showed no reinforcing effect. However, the abrupt increase in fracture toughness with added compatibilizer indicative of a transition to crazing was not found consistent with nanotubes suppressing crazing in homopolymers. Scanning electron microscopy images of the fractured surfaces show agglomerates of carbon nanotubes present which are likely limiting the efficacy of carbon nanotubes at toughening the interface.more » « less
An official website of the United States government
