skip to main content


Title: Systematic Design and Experimental Demonstration of Transmission‐Type Multiplexed Acoustic Metaholograms
Abstract

Acoustic holograms have promising applications in sound‐field reconstruction, particle manipulation, ultrasonic haptics, and therapy. This study reports on the theoretical, numerical, and experimental investigation of multiplexed acoustic holograms at both audio and ultrasonic frequencies via a rationally designed transmission‐type acoustic metamaterial. The proposed metahologram is composed of two Fabry–Pérot resonant channels per unit cell, which enables the simultaneous modulation of the transmitted amplitude and phase at two desired frequencies. In contrast to conventional acoustic metamaterial‐based holograms, the design strategy proposed here provides a new degree of freedom (frequency) that can actively tailor holograms that are otherwise completely passive and significantly enhances the information encoded in acoustic metamaterials. To demonstrate the multiplexed acoustic metamaterial, the projection of two different high‐quality metaholograms is first shown at 14 and 17 kHz, with the patterns of the letters N and S. Then, two‐channel ultrasound focusing and annular beams generation for the incident ultrasonic frequencies of 35 and 42.5 kHz are demonstrated. These multiplexed acoustic metaholograms offer a technical advance to tackle the rising challenges in the fields of acoustic metamaterials, architectural acoustics, and medical ultrasound.

 
more » « less
Award ID(s):
1951221
NSF-PAR ID:
10450740
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
27
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A major challenge for negative‐index acoustic metamaterials is increasing their operational frequency to the MHz range in water for applications such as biomedical ultrasound. Herein, a novel technology to realize acoustic metamaterials in water using microstructured silicon chips as unit cells that incorporate silicon nitride membranes and Helmholtz resonators with dimensions below 100 μm fabricated using clean‐room microfabrication technology is presented. The silicon chip unit‐cells are then assembled to form periodic structures that result in a negative‐index metamaterial. Finite‐element method (FEM) simulations of the metamaterial show a negative‐index branch in the dispersion relation in the 0.25–0.35 MHz range. The metamaterial is characterized experimentally using laser‐doppler vibrometry, showing opposite phase and group velocities, a signature of negative‐index materials, and is in close agreement with FEM simulations. The experimental measurements also show that the magnitude of phase and group velocities increase as the frequency increases within the negative‐index band, confirming the negative‐index behavior of the material. Acoustic indices from –1 to –5 are reached with respect to water in the 0.25–0.35 MHz range. The use of silicon technology microfabrication to produce acoustic metamaterials for operation in water opens a new road to reach frequencies relevant for biomedical ultrasound  applications.

     
    more » « less
  2. Abstract

    Emergent trends in the device development for neural prosthetics have focused on establishing stimulus localization, improving longevity through immune compatibility, reducing energy re-quirements, and embedding active control in the devices. Ultrasound stimulation can single-handedly address several of these challenges. Ultrasonic stimulus of neurons has been studied extensively from 100 kHz to 10 MHz, with high penetration but less localization. In this paper, a chip-scale device consisting of piezoelectric Aluminum Nitride ultrasonic transducers was engineered to deliver gigahertz (GHz) ultrasonic stimulus to the human neural cells. These devices provide a path towards complementary metal oxide semiconductor (CMOS) integration towards fully controllable neural devices. At GHz frequencies, ultrasonic wavelengths in water are a few microns and have an absorption depth of 10–20 µm. This confinement of energy can be used to control stimulation volume within a single neuron. This paper is the first proof-of-concept study to demonstrate that GHz ultrasound can stimulate neuronsin vitro. By utilizing optical calcium imaging, which records calcium ion flux indicating occurrence of an action potential, this paper demonstrates that an application of a nontoxic dosage of GHz ultrasonic waves$$(\ge 0.05\frac{W}{c{m}^{2}})$$(0.05Wcm2)caused an average normalized fluorescence intensity recordings >1.40 for the calcium transients. Electrical effects due to chip-scale ultrasound delivery was discounted as the sole mechanism in stimulation, with effects tested atα = 0.01 statistical significance amongst all intensities and con-trol groups. Ionic transients recorded optically were confirmed to be mediated by ion channels and experimental data suggests an insignificant thermal contributions to stimulation, with a predicted increase of 0.03oCfor$$1.2\frac{W}{c{m}^{2}}\cdot $$1.2Wcm2This paper paves the experimental framework to further explore chip-scale axon and neuron specific neural stimulation, with future applications in neural prosthetics, chip scale neural engineering, and extensions to different tissue and cell types.

     
    more » « less
  3.  
    more » « less
  4. Early predator detection is a key component of the predator-prey arms race and has driven the evolution of multiple animal hearing systems. Katydids (Insecta) have sophisticated ears, each consisting of paired tympana on each foreleg that receive sound both externally, through the air, and internally via a narrowing ear canal running through the leg from an acoustic spiracle on the thorax. These ears are pressure-time difference receivers capable of sensitive and accurate directional hearing across a wide frequency range. Many katydid species have cuticular pinnae which form cavities around the outer tympanal surfaces, but their function is unknown. We investigated pinnal function in the katydid Copiphora gorgonensis by combining experimental biophysics and numerical modelling using 3D ear geometries. We found that the pinnae in C. gorgonensis do not assist in directional hearing for conspecific call frequencies, but instead act as ultrasound detectors. Pinnae induced large sound pressure gains (20–30 dB) that enhanced sound detection at high ultrasonic frequencies (>60 kHz), matching the echolocation range of co-occurring insectivorous gleaning bats. These findings were supported by behavioural and neural audiograms and pinnal cavity resonances from live specimens, and comparisons with the pinnal mechanics of sympatric katydid species, which together suggest that katydid pinnae primarily evolved for the enhanced detection of predatory bats. 
    more » « less
  5. Elaborate animal communication displays are often accompanied by morphological and physiological innovations. In rodents, acoustic signals used in reproductive contexts are produced by two distinct mechanisms, but the underlying anatomy that facilitates such divergence is poorly understood. ‘Audible’ vocalizations with spectral properties between 500 Hz and 16 kHz are thought to be produced by flow-induced vocal fold vibrations, whereas ‘ultrasonic’ vocalizations with fundamental frequencies above 19 kHz are produced by an aerodynamic whistle mechanism. Baiomyine mice (genus Baiomys and Scotinomys) produce complex frequency modulated songs that span these traditional distinctions and represent important models to understand the evolution of signal elaboration. We combined acoustic analyses of spontaneously vocalizing northern pygmy mice (B. taylori) mice in air and light gas atmosphere with morphometric analyses of their vocal apparatus to infer the mechanism of vocal production. Increased fundamental frequencies in heliox indicated that pygmy mouse songs are produced by an aerodynamic whistle mechanism supported by the presence of a ventral pouch and alar cartilage. Comparative analyses of the larynx and ventral pouch size among four additional ultrasonic whistle-producing rodents indicate that the unusually low ‘ultrasonic’ frequencies (relative to body size) of pygmy mice songs are associated with an enlarged ventral pouch. Additionally, mice produced shorter syllables while maintaining intersyllable interval duration, thereby increasing syllable repetition rates. We conclude that while laryngeal anatomy sets the foundation for vocal frequency range, variation and adjustment of central vocal motor control programs fine tunes spectral and temporal characters to promote acoustic diversity within and between species. 
    more » « less