skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Hexachromatic bioinspired camera for image-guided cancer surgery

Cancer affects one in three people worldwide. Surgery remains the primary curative option for localized cancers, but good prognoses require complete removal of primary tumors and timely recognition of metastases. To expand surgical capabilities and enhance patient outcomes, we developed a six-channel color/near-infrared image sensor inspired by the mantis shrimp visual system that enabled near-infrared fluorescence image guidance during surgery. The mantis shrimp’s unique eye, which maximizes the number of photons contributing to and the amount of information contained in each glimpse of its surroundings, is recapitulated in our single-chip imaging system that integrates arrays of vertically stacked silicon photodetectors and pixelated spectral filters. To provide information about tumor location unavailable from a single instrument, we tuned three color channels to permit an intuitive perspective of the surgical procedure and three near-infrared channels to permit multifunctional imaging of optical probes highlighting cancerous tissue. In nude athymic mice bearing human prostate tumors, our image sensor enabled simultaneous detection of two tumor-targeted fluorophores, distinguishing diseased from healthy tissue in an estimated 92% of cases. It also permitted extraction of near-infrared structured illumination enabling the mapping of the three-dimensional topography of tumors and surgical sites to within 1.2-mm error. In the operating room, during surgical resection in 18 patients with breast cancer, our image sensor further enabled sentinel lymph node mapping using clinically approved near-infrared fluorophores. The flexibility and performance afforded by this simple and compact architecture highlights the benefits of biologically inspired sensors in image-guided surgery.

 
more » « less
Award ID(s):
2030421
NSF-PAR ID:
10226530
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science Translational Medicine
Volume:
13
Issue:
592
ISSN:
1946-6234
Page Range / eLocation ID:
Article No. eaaw7067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tumor-targeted fluorescent probes in the near-infrared spectrum can provide invaluable information about the location and extent of primary and metastatic tumors during intraoperative procedures to ensure no residual tumors are left in the patient's body. Even though the first fluorescence-guided surgery was performed more than 50 years ago, it is still not accepted as a standard of care in part due to the lack of efficient and non-toxic targeted probes approved by regulatory agencies around the world. Herein, we report protease-activated cationic gelatin nanoparticles encapsulating indocyanine green (ICG) for the detection of primary breast tumors in murine models with high tumor-to-background ratios. Upon intravenous administration, these nanoprobes remain optically silent due to the energy resonance transfer among the bound ICG molecules. As the nanoprobes extravasate and are exposed to the acidic tumor microenvironment, their positive surface charges increase, facilitating cellular uptake. The internalized nanoprobes are activated upon proteolytic degradation of gelatin to allow high contrast between the tumor and normal tissue. Since both gelatin and ICG are FDA-approved for intravenous administration, this activatable nanoprobe can lead to quick clinical adoption and improve the treatment of patients undergoing image-guided cancer surgery. 
    more » « less
  2. Abstract

    Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging‐guided surgery (IGS) as well as surgery‐assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS‐assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS‐assisted precision synergistic cancer therapy.

     
    more » « less
  3. Kidney cancer is a kind of high mortality cancer because of the difficulty in early diagnosis and the high metastatic dissemination in treatments. The surgical resection of tumors is the most effective treatment for renal cancer patients. However, precise assessment of tumor margins is a challenge during surgical resection. The objective of this study is to demonstrate an optical imaging tool in precisely distinguishing kidney tumor borders and identifying tumor zones from normal tissues to assist surgeons in accurately resecting tumors from kidneys during the surgery. 30 samples from six human kidneys were imaged using polarization-sensitive optical coherence tomography (PS-OCT). Cross-sectional, enface, and spatial information of kidney samples were obtained for microenvironment reconstruction. Polarization parameters (phase retardation, optic axis direction, and degree of polarization uniformity (DOPU) and Stokes parameters (Q, U, and V) were utilized for multiparameter analysis. To verify the detection accuracy of PS-OCT, H&E histology staining and dice-coefficient were utilized to quantify the performance of PS-OCT in identifying tumor borders and regions. In this study, tumor borders were clearly identified by PS-OCT imaging, which outperformed the conventional intensity-based OCT. With H&E histological staining as golden standard, PS-OCT precisely identified the tumor regions and tissue distributions at different locations and different depths based on polarization and Stokes parameters. Compared to the traditional attenuation coefficient quantification method, PS-OCT demonstrated enhanced contrast of tissue characteristics between normal and cancerous tissues due to the birefringence effects. Our results demonstrated that PS-OCT was promising to provide imaging guidance for the surgical resection of kidney tumors and had the potential to be used for other human kidney surgeries in clinics such as renal biopsy. 
    more » « less
  4. Abstract

    Histopathology plays a critical role in the diagnosis and surgical management of cancer. However, access to histopathology services, especially frozen section pathology during surgery, is limited in resource-constrained settings because preparing slides from resected tissue is time-consuming, labor-intensive, and requires expensive infrastructure. Here, we report a deep-learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tissue at cellular resolution without the need for physical sectioning. Three key features jointly make DeepDOF-SE practical. First, tissue specimens are stained directly with inexpensive vital fluorescent dyes and optically sectioned with ultra-violet excitation that localizes fluorescent emission to a thin surface layer. Second, a deep-learning algorithm extends the depth-of-field, allowing rapid acquisition of in-focus images from large areas of tissue even when the tissue surface is highly irregular. Finally, a semi-supervised generative adversarial network virtually stains DeepDOF-SE fluorescence images with hematoxylin-and-eosin appearance, facilitating image interpretation by pathologists without significant additional training. We developed the DeepDOF-SE platform using a data-driven approach and validated its performance by imaging surgical resections of suspected oral tumors. Our results show that DeepDOF-SE provides histological information of diagnostic importance, offering a rapid and affordable slide-free histology platform for intraoperative tumor margin assessment and in low-resource settings.

     
    more » « less
  5. null (Ed.)
    Advanced stage glioma is the most aggressive form of malignant brain tumors with a short survival time. Real-time pathology assisted, or image guided surgical procedures that eliminate tumors promise to improve the clinical outcome and prolong the lives of patients. Our work is focused on the development of a rapid and sensitive assay for intraoperative diagnostics of glioma and identification of optical markers essential for differentiation between tumors and healthy brain tissues. We utilized fluorescence lifetime imaging (FLIM) of endogenous fluorophores related to metabolism of the glioma from freshly excised brains tissues. Macroscopic time-resolved fluorescence images of three intracranial animal glioma models and surgical samples of patients’ glioblastoma together with the white matter have been collected. Several established and new algorithms were applied to identify the imaging markers of the tumors. We found that fluorescence lifetime parameters characteristic of the glioma provided background for differentiation between the tumors and intact brain tissues. All three rat tumor models demonstrated substantial differences between the malignant and normal tissue. Similarly, tumors from patients demonstrated statistically significant differences from the peritumoral white matter without infiltration. While the data and the analysis presented in this paper are preliminary and further investigation with a larger number of samples is required, the proposed approach based on the macroscopic FLIM has a high potential for diagnostics of glioma and evaluation of the surgical margins of gliomas. 
    more » « less