skip to main content


Title: Physics-guided Energy-efficient Path Selection Using On-board Diagnostics Data
Given a spatial graph, an origin and a destination, and on-board diagnostics (OBD) data, the energy-efficient path selection problem aims to find the path with the least expected energy consumption (EEC). Two main objectives of smart cities are sustainability and prosperity, both of which benefit from reducing the energy consumption of transportation. The challenges of the problem include the dependence of EEC on the physical parameters of vehicles, the autocorrelation of the EEC on segments of paths, the high computational cost of EEC estimation, and potential negative EEC. However, the current cost estimation models for the path selection problem do not consider vehicles’ physical parameters. Moreover, the current path selection algorithms follow the “path + edge” pattern when exploring candidate paths, resulting in redundant computation. Our preliminary work introduced a physics-guided energy consumption model and proposed a maximal-frequented-path-graph shortest-path algorithm using the model. In this work, we propose an informed algorithm using an admissible heuristic and propose an algorithm to handle negative EEC. We analyze the proposed algorithms theoretically and evaluate the proposed algorithms via experiments with real-world and synthetic data. We also conduct two case studies using real-world data and a road test to validate the proposed method.  more » « less
Award ID(s):
1916252
NSF-PAR ID:
10226574
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM/IMS Transactions on Data Science
Volume:
1
Issue:
3
ISSN:
2691-1922
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The trajectory-aware lowest-cost path selection problem aims to find the lowest-cost path using trajectory data. Trajectory data is valuable since it carries information about travel cost along paths, and also reflects travelers' routing preference. Path-centric travel cost estimation models using trajectory data grows popular recently, which considers the auto-correlation of the energy consumption on different segments of a path. However, path-centric models are more computationally expensive than edge-centric models. The main challenge of this problem is that the travel cost of every candidate path explored during the process of searching for the lowest-cost path need to be estimated, resulting in high computational cost. The current path selection algorithms that use path-centric cost estimation models still follow the pattern of "path + edge" when exploring candidate paths, which may result in redundant computation. We introduce a trajectory-aware graph model in which each node is a maximal trajectory-aware path. Two nodes in the trajectory-aware graph are linked by an edge if their union forms a trajectory-union path. We then propose a path selection algorithm to find a path in the proposed trajectory-aware graph which corresponds to the lowest-cost path in the input spatial network. We prove theoretically the proposed algorithm is correct and complete. Moreover, we prove theoretically that the proposed path selection algorithm cost much less computational time than the algorithm used in the related work, and validate it through experiments using real-world trajectory data. 
    more » « less
  2. The eco-toll estimation problem quantifies the expected environmental cost (e.g., energy consumption, exhaust emissions) for a vehicle to travel along a path. This problem is important for societal applications such as eco-routing, which aims to find paths with the lowest exhaust emissions or energy need. The challenges of this problem are threefold: (1) the dependence of a vehicle's eco-toll on its physical parameters; (2) the lack of access to data with eco-toll information; and (3) the influence of contextual information (i.e. the connections of adjacent segments in the path) on the eco-toll of road segments. Prior work on eco-toll estimation has mostly relied on pure data-driven approaches and has high estimation errors given the limited training data. To address these limitations, we propose a novel Eco-toll estimation Physics-informed Neural Network framework (Eco-PiNN) using three novel ideas, namely, (1) a physics-informed decoder that integrates the physical laws governing vehicle dynamics into the network, (2) an attention-based contextual information encoder, and (3) a physics-informed regularization to reduce overfitting. Experiments on real-world heavy-duty truck data show that the proposed method can greatly improve the accuracy of eco-toll estimation compared with state-of-the-art methods. *The full version of the paper can be accessed at https://arxiv.org/abs/2301.05739 
    more » « less
  3. Abstract

    Recently, benefiting from rapid development of energy harvesting technologies, the research trend of wireless sensor networks has shifted from the battery‐powered network to the one that can harvest energy from ambient environments. In such networks, a proper use of harvested energy poses plenty of challenges caused by numerous influence factors and complex application environments. Although numerous works have been based on the energy status of sensor nodes, no work refers to the issue of minimizing the overall data transmission cost by adjusting transmission power of nodes in energy‐harvesting wireless sensor networks. In this paper, we consider the optimization problem of deriving the energy‐neutral minimum cost paths between the source nodes and the sink node. By introducing the concept of energy‐neutral operation, we first propose a polynomial‐time optimal algorithm for finding the optimal path from a single source to the sink by adjusting the transmission powers. Based on the work earlier, another polynomial‐time algorithm is further proposed for finding the approximated optimal paths from multiple sources to the sink node. Also, we analyze the network capacity and present a near‐optimal algorithm based on the Ford–Fulkerson algorithm for approaching the maximum flow in the given network. We have validated our algorithms by various numerical results in terms of path capacity, least energy of nodes, energy ratio, and path cost. Simulation results show that the proposed algorithms achieve significant performance enhancements over existing schemes. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  4. A bounded cost path planning method is developed for underwater vehicles assisted by a data-driven flow modeling method. The modeled flow field is partitioned as a set of cells of piece-wise constant flow speed. A flow partition algorithm and a parameter estimation algorithm are proposed to learn the flow field structure and parameters with justified convergence. A bounded cost path planning algorithm is developed taking advantage of the partitioned flow model. An extended potential search method is proposed to determine the sequence of partitions that the optimal path crosses. The optimal path within each partition is then determined by solving a constrained optimization problem. Theoretical justification is provided for the proposed extended potential search method generating the optimal solution. The path planned has the highest probability to satisfy the bounded cost constraint. The performance of the algorithms is demonstrated with experimental and simulation results, which show that the proposed method is more computationally efficient than some of the existing methods. 
    more » « less
  5. Traditionally vehicles act only as servers in transporting passengers and goods. With increasing sensor equipment in vehicles, including automated vehicles, there is a need to test algorithms that consider the dual role of vehicles as both servers and sensors. The paper formulates a sequential route selection problem as a shortest path problem with on-time arrival reliability under a multi-armed bandit setting, a type of reinforcement learning model. A decision-maker has to make a finite set of decisions sequentially on departure time and path between a fixed origin-destination pair such that on-time reliability is maximized while travel time is minimized. The upper confidence bound algorithm is extended to handle this problem. Several tests are conducted. First, simulated data successfully verifies the method, then a real-data scenario is constructed of a hotel shuttle service from midtown Manhattan in New York City providing hourly access to John F. Kennedy International Airport. Results suggest that route selection with multi-armed bandit learning algorithms can be effective but neglecting passenger scheduling constraints can have negative effects on on-time arrival reliability by as much as 4.8% and combined reliability and travel time by 66.1%. 
    more » « less