Abstract Layered transition‐metal dichalcogenides (TMDs) have shown promise to replace carbon‐based compounds as suitable anode materials for Lithium‐ion batteries (LIBs) owing to facile intercalation and de‐intercalation of lithium (Li) during charging and discharging, respectively. While the intercalation mechanism of Li in mono‐ and bi‐layer TMDs has’ been thoroughly examined, mechanistic understanding of Li intercalation‐induced phase transformation in bulk or films of TMDs is still largely unexplored. This study investigates possible scenarios during sequential Li intercalation and aims to gain a mechanistic understanding of the phase transformation in bulk MoS2using density functional theory (DFT) calculations. The manuscript examines the role of concentration and distribution of Li‐ions on the formation of dual‐phase 2H‐1T microstructures that have been observed experimentally. The study demonstrates that lithiation would proceed in a systematic layer‐by‐layer manner wherein Li‐ions diffuse into successive interlayer spacings to render local phase transformation of the adjacent MoS2layers from 2H‐to‐1T phase in the multilayered MoS2. This local phase transition is attributed to partial ionization of Li and charge redistribution around the metal atoms and is followed by subsequent lattice straining. In addition, the stability of single‐phase vs. multiphase intercalated microstructures, and the origins of structural changes accompanying Li‐ion insertion are investigated at atomic scales. 
                        more » 
                        « less   
                    
                            
                            Revisiting Intercalation‐Induced Phase Transitions in 2D Group VI Transition Metal Dichalcogenides
                        
                    
    
            Intercalation of alkali metals is widely studied to introduce a structural phase transition from 2H to 1T′ in 2D group VI transition metal dichalcogenides (TMDCs). This highly efficient phase transition method has enabled an access to a library of phases with novel physical and chemical properties attractive for functional devices and electrochemical catalysis. However, despite numerous studies that have predicted that charge doping mainly contributes to the structural phase transition in the intercalation process, a mechanistic understanding of the phase transition at the atomic level has not been fully revealed. Furthermore, the coupled effects of strain and other intrinsic or extrinsic factors on the intercalation‐induced phase transition have not been quantitatively determined. Herein, the progress of the intercalation‐induced phase transition is briefly overviewed and the knowledge gaps in the current understanding of phase transition and intercalation in 2D TMDCs are highlighted. To fully gain the microscopic picture of the intercalation‐induced phase transition, in situ multimodal probes to monitor the real‐time structure−property relationship during intercalation are suggested. The proposed research directions further direct material scientists to efficiently engineer phase transition pathways in 2D materials to explore novel functional phases. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1749742
- PAR ID:
- 10226639
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy and Sustainability Research
- Volume:
- 2
- Issue:
- 8
- ISSN:
- 2699-9412
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Understanding of phase‐stability and nanoscale structural modulation during lithiation of layer materials demand comprehensive analysis of the Li‐containing phases in the solid‐state reaction products. Conventional chemical analysis methods in the transmission electron microscope (TEM) are not ideal to detect Li in partially intercalated nanodomains because Li atoms do not remain stationary under the focused electron beam. An alternate approach combining density functional theory (DFT) modeling and multislice image simulation has been explored in the present study to analyze the intercalated structures and to detect and quantify Li from the recorded high‐resolution TEM (HRTEM) micrographs of partially intercalated phases. HRTEM micrographs from partially lithiated graphite and MoS2show variations in the interlayer spacings, but are not usually directly interpretable. Hypothetical intercalated microstructures of graphite and MoS2supercells have been generated using atomic‐scale simulations with systematically varying Li concentrations. The measured interplanar spacings are compared with those of experimentally recorded HRTEM micrographs from lithiated graphite and MoS2. The results confirm the coexistence of different lithiated phases at localized domains. This understanding of phase transformation and the lithium quantification provides a basis for understanding the structural accommodation of layered materials during intercalation.more » « less
- 
            Abstract Transition metal dichalcogenides (TMDCs) have received much attention for optoelectronic applications because of their band gap transition from indirect to direct as they decrease from multilayer to monolayer. Recent studies have experimented with the use of photochromic molecules to optically control the charge transport of two-dimensional (2D) TMDCs. In this work, a numerical study using density functional theory has been performed to test the possibility to control the optical property of 2D TMDC monolayers with various photochromic molecules. When the photochromic molecule’s highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) energy levels are within the band gap of 2D TMDC monolayers, holes or electrons will transport to the photochromic molecules, resulting in the reduction of excitons in the 2D TMDC monolayers. The reduced optical response can be recovered by going through reverse isomerization of the photochromic molecules. Molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) monolayers were tested with various photochromic molecules including azobenzene, spiropyran, and diarylethenes (DAE 2 ethyl, DAE 5 ethyl, DAE 5 methyl). The systematic study presented in this work displays that MoS2-Spiropyran and every diarylethene derivative used in this study except MoS2-DAE 5 methyl exhibited photo-switchable behavior.more » « less
- 
            Phase evolution and structural modulation during in situ lithiation of MoS2, WS2 and graphite in TEMAbstract Li-ion batteries function by Li intercalating into and through the layered electrode materials. Intercalation is a solid-state interaction resulting in the formation of new phases. The new observations presented here reveal that at the nanoscale the intercalation mechanism is fundamentally different from the existing models and is actually driven by nonuniform phase distributions rather than the localized Li concentration: the lithiation process is a ‘distribution-dependent’ phenomena. Direct structure imaging of 2H and 1T dual-phase microstructures in lithiated MoS2and WS2along with the localized chemical segregation has been demonstrated in the current study. Li, a perennial challenge for the TEM, is detected and imaged using a low-dose, direct-electron detection camera on an aberration-corrected TEM and confirmed by image simulation. This study shows the presence of fully lithiated nanoscale domains of 2D host matrix in the vicinity of Li-lean regions. This confirms the nanoscale phase formation followed by Oswald ripening, where the less-stable smaller domains dissolves at the expense of the larger and more stable phases.more » « less
- 
            Controllable superconducting to semiconducting phase transition in topological superconductor 2M-WS2Abstract The investigation of exotic properties in two-dimensional (2D) topological superconductors has garnered increasing attention in condensed matter physics, particularly for applications in topological qubits. Despite this interest, a reliable way of fabricating topological Josephson junctions (JJs) utilizing topological superconductors has yet to be demonstrated. Controllable structural phase transition presents a unique approach to achieving topological JJs in atomically thin 2D topological superconductors. In this work, we report the pioneering demonstration of a structural phase transition from the superconducting to the semiconducting phase in the 2D topological superconductor 2M-WS2. We reveal that the metastable 2M phase of WS2remains stable in ambient conditions but transitions to the 2H phase when subjected to temperatures above 150 °C. We further locally induced the 2H phase within 2M-WS2nanolayers using laser irradiation. Notably, the 2H phase region exhibits a hexagonal shape, and scanning tunneling microscopy uncovers an atomically sharp crystal structural transition between the 2H and 2M phase regions. Moreover, the 2M to 2H phase transition can be induced at the nanometer scale by a 200 kV electron beam. The electrical transport measurements further confirmed the superconductivity of the pristine 2M-WS2and the semiconducting behavior of the laser-irradiated 2M-WS2. Our results establish a novel approach for controllable topological phase change in 2D topological superconductors, significantly impacting the development of atomically scaled planar topological JJs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
