skip to main content


Title: Revisiting Intercalation‐Induced Phase Transitions in 2D Group VI Transition Metal Dichalcogenides
  more » « less
Award ID(s):
1749742
PAR ID:
10226640
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy and Sustainability Research
Volume:
2
Issue:
8
ISSN:
2699-9412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Layered transition‐metal dichalcogenides (TMDs) have shown promise to replace carbon‐based compounds as suitable anode materials for Lithium‐ion batteries (LIBs) owing to facile intercalation and de‐intercalation of lithium (Li) during charging and discharging, respectively. While the intercalation mechanism of Li in mono‐ and bi‐layer TMDs has’ been thoroughly examined, mechanistic understanding of Li intercalation‐induced phase transformation in bulk or films of TMDs is still largely unexplored. This study investigates possible scenarios during sequential Li intercalation and aims to gain a mechanistic understanding of the phase transformation in bulk MoS2using density functional theory (DFT) calculations. The manuscript examines the role of concentration and distribution of Li‐ions on the formation of dual‐phase 2H‐1T microstructures that have been observed experimentally. The study demonstrates that lithiation would proceed in a systematic layer‐by‐layer manner wherein Li‐ions diffuse into successive interlayer spacings to render local phase transformation of the adjacent MoS2layers from 2H‐to‐1T phase in the multilayered MoS2. This local phase transition is attributed to partial ionization of Li and charge redistribution around the metal atoms and is followed by subsequent lattice straining. In addition, the stability of single‐phase vs. multiphase intercalated microstructures, and the origins of structural changes accompanying Li‐ion insertion are investigated at atomic scales.

     
    more » « less
  2. Abstract

    Understanding of phase‐stability and nanoscale structural modulation during lithiation of layer materials demand comprehensive analysis of the Li‐containing phases in the solid‐state reaction products. Conventional chemical analysis methods in the transmission electron microscope (TEM) are not ideal to detect Li in partially intercalated nanodomains because Li atoms do not remain stationary under the focused electron beam. An alternate approach combining density functional theory (DFT) modeling and multislice image simulation has been explored in the present study to analyze the intercalated structures and to detect and quantify Li from the recorded high‐resolution TEM (HRTEM) micrographs of partially intercalated phases. HRTEM micrographs from partially lithiated graphite and MoS2show variations in the interlayer spacings, but are not usually directly interpretable. Hypothetical intercalated microstructures of graphite and MoS2supercells have been generated using atomic‐scale simulations with systematically varying Li concentrations. The measured interplanar spacings are compared with those of experimentally recorded HRTEM micrographs from lithiated graphite and MoS2. The results confirm the coexistence of different lithiated phases at localized domains. This understanding of phase transformation and the lithium quantification provides a basis for understanding the structural accommodation of layered materials during intercalation.

     
    more » « less
  3. Abstract

    The investigation of exotic properties in two-dimensional (2D) topological superconductors has garnered increasing attention in condensed matter physics, particularly for applications in topological qubits. Despite this interest, a reliable way of fabricating topological Josephson junctions (JJs) utilizing topological superconductors has yet to be demonstrated. Controllable structural phase transition presents a unique approach to achieving topological JJs in atomically thin 2D topological superconductors. In this work, we report the pioneering demonstration of a structural phase transition from the superconducting to the semiconducting phase in the 2D topological superconductor 2M-WS2. We reveal that the metastable 2M phase of WS2remains stable in ambient conditions but transitions to the 2H phase when subjected to temperatures above 150 °C. We further locally induced the 2H phase within 2M-WS2nanolayers using laser irradiation. Notably, the 2H phase region exhibits a hexagonal shape, and scanning tunneling microscopy uncovers an atomically sharp crystal structural transition between the 2H and 2M phase regions. Moreover, the 2M to 2H phase transition can be induced at the nanometer scale by a 200 kV electron beam. The electrical transport measurements further confirmed the superconductivity of the pristine 2M-WS2and the semiconducting behavior of the laser-irradiated 2M-WS2. Our results establish a novel approach for controllable topological phase change in 2D topological superconductors, significantly impacting the development of atomically scaled planar topological JJs.

     
    more » « less
  4. Abstract

    Lithium intercalation of MoS2is generally believed to introduce a phase transition from H phase (semiconducting) to T phase (metallic). However, during the intercalation process, a spatially sharp boundary is usually formed between the fully intercalated T phase MoS2and non-intercalated H phase MoS2. The intermediate state,i.e., lightly intercalated H phase MoS2without a phase transition, is difficult to investigate by optical-microscope-based spectroscopy due to the narrow size. Here, we report the stabilization of the intermediate state across the whole flake of twisted bilayer MoS2. The twisted bilayer system allows the lithium to intercalate from the top surface and enables fast Li-ion diffusion by the reduced interlayer interaction. TheE2gRaman mode of the intermediate state shows a peak splitting behavior. Our simulation results indicate that the intermediate state is stabilized by lithium-induced symmetry breaking of the H phase MoS2. Our results provide an insight into the non-uniform intercalation during battery charging and discharging, and also open a new opportunity to modulate the properties of twisted 2D systems with guest species doping in the Moiré structures.

     
    more » « less
  5. Abstract

    Transition metal dichalcogenides (TMDCs) have received much attention for optoelectronic applications because of their band gap transition from indirect to direct as they decrease from multilayer to monolayer. Recent studies have experimented with the use of photochromic molecules to optically control the charge transport of two-dimensional (2D) TMDCs. In this work, a numerical study using density functional theory has been performed to test the possibility to control the optical property of 2D TMDC monolayers with various photochromic molecules. When the photochromic molecule’s highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) energy levels are within the band gap of 2D TMDC monolayers, holes or electrons will transport to the photochromic molecules, resulting in the reduction of excitons in the 2D TMDC monolayers. The reduced optical response can be recovered by going through reverse isomerization of the photochromic molecules. Molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) monolayers were tested with various photochromic molecules including azobenzene, spiropyran, and diarylethenes (DAE 2 ethyl, DAE 5 ethyl, DAE 5 methyl). The systematic study presented in this work displays that MoS2-Spiropyran and every diarylethene derivative used in this study except MoS2-DAE 5 methyl exhibited photo-switchable behavior.

     
    more » « less