skip to main content

Title: A life-history perspective on sexual selection in a polygamous species
Abstract Background

Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders.


We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67% of the males and 14% of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Bateman more » gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings.


Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.

« less
; ; ; ;
Publication Date:
Journal Name:
BMC Evolutionary Biology
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Charles Darwin’s  Descent of Man, and Selection in Relation to Sex  tackled the two main controversies arising from the Origin of Species:  the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on howmore »traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE« less
  2. Abstract Sexual coercion, in the form of forced copulations, is relatively frequently observed in orangutans and generally attributed to their semi-solitary lifestyle. High ecological costs of association for females may be responsible for this lifestyle and may have prevented the evolution of morphological fertility indicators (e.g., sexual swellings), which would attract (male) associates. Therefore, sexual conflict may arise not only about mating per se but also about associations, because males may benefit from associations with females to monitor their reproductive state and attempt to monopolize their sexual activities. Here, we evaluate association patterns and costs for females when associating with both males and females of two different orangutan species at two study sites: Suaq, Sumatra ( Pongo abelii ), and Tuanan, Borneo ( Pongo pygmaeus wurmbii ). Female association frequency with both males and females was higher in the Sumatran population, living in more productive habitat. Accordingly, we found that the cost of association, in terms of reduced feeding to moving ratio and increased time being active, is higher in the less sociable Bornean population. Males generally initiated and maintained such costly associations with females, and prolonged associations with males led to increased female fecal cortisol metabolite (FCM) levels atmore »Tuanan, the Bornean population. We conclude that male-maintained associations are an expression of sexual conflict in orangutans, at least at Tuanan. For females, this cost of association may be responsible for the lack of sexual signaling, while needing to confuse paternity. Significance statement Socioecological theory predicts a trade-off between the benefits of sociality and the ecological costs of increased feeding competition. Orangutans’ semi-solitary lifestyle has been attributed to the combination of high association costs and low predation risk. Previous work revealed a positive correlation between association frequencies and habitat productivity, but did not measure the costs of association. In this comparative study, we show that females likely incur costs from involuntary, male-maintained associations, especially when they last for several days and particularly in the population characterized by lower association frequencies. Association maintenance therefore qualifies as another expression of sexual conflict in orangutans, and especially prolonged, male-maintained associations may qualify as an indirect form of sexual coercion.« less
  3. Abstract

    Ecological processes driving female-skewed adult sex ratios (ASRs; males:females) in populations with polygynous mating systems have been addressed theoretically, but empirical support is scarce. The theoretical framework of the female substitution hypothesis (FSH) asserts that a female-skewed ASR at carrying capacity reflects an overall fitness benefit for females and for males competitive in acquiring access to reproductive females. The FSH predicts that as population abundance increases females should acquire forage more efficiently than males, thereby leading to passive displacement of males. The result is declining ASR associated with differential habitat use by both sexes as food resources are depleted by female scramble competition. We characterized the temporal variation in ASR in a Roosevelt elk population inhabiting the Redwood National and State Parks, California, across 24 years, and determined which of two possible ecological mechanisms was the driver of a declining ASR. The first mechanism explored was that increasing female abundance associated with declining forage in the study area led to the passive displacement of males into the study periphery over time. The second mechanism explored was that a declining ASR was precipitated by a lack of males within the study area and the study periphery. Systematic population surveys frommore »a vehicle were done to estimate abundance and ASR as well as assess male abundance in the study periphery. Forage biomass was estimated in quarter-m2 plots randomly placed in meadows inhabited by female elk. Our multiple regression analysis revealed an inverse relationship between abundance and ASR indicating density dependence. We found numerous males in the study periphery when females were abundant. Our least squares models indicated declining food resources across years when female abundance increased. Our results showed that the first, and not the second, ecological mechanism examined was responsible for a female-skewed ASR. Our findings provide empirical support for the theoretical framework of the FSH in a nonmigratory population protected from hunting.

    « less
  4. Synopsis Sound production in tiger moths (Erebidae: Arctiinae) plays a role in natural selection. Some species use tymbal sounds as jamming signals avoiding bat predation. High duty cycle signals have the greatest efficacy in this regard. Tiger moth sounds can also be used for intraspecific communication. Little is known about the role of sound in the mating behavior of jamming species or the signal preferences underlying mate choice. We recorded sound production during the courtship of two high duty cycle arctiines, Bertholdia trigona and Carales arizonensis. We characterized variation in their acoustic signals, measured female preference for male signals that vary in duty cycle, and performed female choice experiments to determine the effect of male duty cycle on the acceptance of male mates. Although both species produced sound during courtship, the role of acoustic communication appears different between the species. Bertholdia trigona was acoustically active in all intraspecific interactions. Females preferred and ultimately mated with males that produced higher duty cycles. Muted males were never chosen. In C. arizonensis however, sound emissions were limited during courtship and in some successful matings no sound was detected. Muted and clicking males were equally successful in female mate-choice experiments, indicating that acoustic communicationmore »is not essential for mating in C. arizonensis. Our results suggest that in B. trigona natural and sexual selection may work in parallel, to favor higher duty cycle clicking.« less
  5. Abstract

    When animals are sick, their physiology and behavior change in ways that can impact their offspring. Research is emerging showing that infection risk alone can also modify the physiology and behavior of healthy animals. If physiological responses to environments with high infection risk take place during reproduction, it is possible that they lead to maternal effects. Understanding whether and how high infection risk triggers maternal effects is important to elucidate how the impacts of infectious agents extend beyond infected individuals and how, in this way, they are even stronger evolutionary forces than already considered. Here, to evaluate the effects of infection risk on maternal responses, we exposed healthy female Japanese quail to either an immune-challenged (lipopolysaccharide [LPS] treated) mate or to a healthy (control) mate. We first assessed how females responded behaviorally to these treatments. Exposure to an immune-challenged or control male was immediately followed by exposure to a healthy male, to determine whether treatment affected paternity allocation. We predicted that females paired with immune-challenged males would avoid and show aggression towards those males, and that paternity would be skewed towards the healthy male. After mating, we collected eggs over a 5-day period. As an additional control, we collectedmore »eggs from immune-challenged females mated to healthy males. We tested eggs for fertilization status, embryo sex ratio, as well as albumen corticosterone, lysozyme activity, and ovotransferrin, and yolk antioxidant capacity. We predicted that immune-challenged females would show the strongest changes in the egg and embryo metrics, and that females exposed to immune-challenged males would show intermediate responses. Contrary to our predictions, we found no avoidance of immune-challenged males and no differences in terms of paternity allocation. Immune-challenged females laid fewer eggs, with an almost bimodal distribution of sex ratio for embryos. In this group, albumen ovotransferrin was the lowest, and yolk antioxidant capacity decreased over time, while it increased in the other treatments. No differences in albumen lysozyme were found. Both females that were immune-challenged and those exposed to immune-challenged males deposited progressively more corticosterone in their eggs over time, a pattern opposed to that shown by females exposed to control males. Our results suggest that egg-laying Japanese quail may be able to respond to infection risk, but that additional or prolonged sickness symptoms may be needed for more extensive maternal responses.

    « less