ABSTRACT Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and β-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb–O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland β-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb–O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb–O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport. 
                        more » 
                        « less   
                    
                            
                            Adaptive introgression of the beta-globin cluster in two Andean waterfowl
                        
                    
    
            Introgression of beneficial alleles has emerged as an important avenue for genetic adaptation in both plant and animal populations. In vertebrates, adaptation to hypoxic high-altitude environments involves the coordination of multiple molecular and cellular mechanisms, including selection on the hypoxia-inducible factor (HIF) pathway and the blood-O2 transport protein hemoglobin (Hb). In two Andean duck species, a striking DNA sequence similarity reflecting identity by descent is present across the ~20 kb β-globin cluster including both embryonic (HBE) and adult (HBB) paralogs, though it was yet untested whether this is due to independent parallel evolution or adaptive introgression. In this study, we find that identical amino acid substitutions in the β-globin cluster that increase Hb-O2 affinity have likely resulted from historical interbreeding between high-altitude populations of two different distantly-related species. We examined the direction of introgression and discovered that the species with a deeper mtDNA divergence that colonized high altitude earlier in history (Anas flavirostris) transferred adaptive genetic variation to the species with a shallower divergence (A. georgica) that likely colonized high altitude more recently possibly following a range shift into a novel environment. As a consequence, the species that received these β-globin variants through hybridization might have adapted to hypoxic conditions in the high-altitude environment more quickly through acquiring beneficial alleles from the standing, hybrid-origin variation, leading to faster evolution. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1812103
- PAR ID:
- 10226721
- Date Published:
- Journal Name:
- Heredity
- ISSN:
- 0018-067X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A key question in evolutionary biology concerns the relative importance of different sources of adaptive genetic variation, such as de novo mutations, standing variation, and introgressive hybridization. A corollary question concerns how allelic variants derived from these different sources may influence the molecular basis of phenotypic adaptation. Here, we use a protein-engineering approach to examine the phenotypic effect of putatively adaptive hemoglobin (Hb) mutations in the high-altitude Tibetan wolf that were selectively introgressed into the Tibetan mastiff, a high-altitude dog breed that is renowned for its hypoxia tolerance. Experiments revealed that the introgressed coding variants confer an increased Hb–O2 affinity in conjunction with an enhanced Bohr effect. We also document that affinity-enhancing mutations in the β-globin gene of Tibetan wolf were originally derived via interparalog gene conversion from a tandemly linked β-globin pseudogene. Thus, affinity-enhancing mutations were introduced into the β-globin gene of Tibetan wolf via one form of intragenomic lateral transfer (ectopic gene conversion) and were subsequently introduced into the Tibetan mastiff genome via a second form of lateral transfer (introgression). Site-directed mutagenesis experiments revealed that the increased Hb–O2 affinity requires a specific two-site combination of amino acid replacements, suggesting that the molecular underpinnings of Hb adaptation in Tibetan mastiff (involving mutations that arose in a nonexpressed gene and which originally fixed in Tibetan wolf) may be qualitatively distinct from functionally similar changes in protein function that could have evolved via sequential fixation of de novo mutations during the breed’s relatively short duration of residency at high altitude.more » « less
- 
            null (Ed.)In natural populations of animals, a growing body of evidence suggests that introgressive hybridization may often serve as an important source of adaptive genetic variation. Population genomic studies of high-altitude vertebrates have provided strong evidence of positive selection on introgressed allelic variants, typically involving a long-term highland species as the donor and a more recently arrived colonizing species as the recipient. In high-altitude humans and canids from the Tibetan Plateau, case studies of adaptive introgression involving the HIF transcription factor, EPAS1 , have provided insights into complex histories of ancient introgression, including examples of admixture from now-extinct source populations. In Tibetan canids and Andean waterfowl, directed mutagenesis experiments involving introgressed hemoglobin variants successfully identified causative amino acid mutations and characterized their phenotypic effects, thereby providing insights into the functional properties of selectively introgressed alleles. We review case studies of adaptive introgression in high-altitude vertebrates and we highlight findings that may be of general significance for understanding mechanisms of environmental adaptation involving different sources of genetic variation.more » « less
- 
            Abstract Predictable trait variation across environments suggests shared adaptive responses via repeated genetic evolution, phenotypic plasticity or both. Matching of trait–environment associations at phylogenetic and individual scales implies consistency between these processes. Alternatively, mismatch implies that evolutionary divergence has changed the rules of trait–environment covariation. Here we tested whether species adaptation alters elevational variation in blood traits. We measured blood for 1217 Andean hummingbirds of 77 species across a 4600‐m elevational gradient. Unexpectedly, elevational variation in haemoglobin concentration ([Hb]) was scale independent, suggesting that physics of gas exchange, rather than species differences, determines responses to changing oxygen pressure. However, mechanisms of [Hb] adjustment did show signals of species adaptation: Species at either low or high elevations adjusted cell size, whereas species at mid‐elevations adjusted cell number. This elevational variation in red blood cell number versus size suggests that genetic adaptation to high altitude has changed how these traits respond to shifts in oxygen availability.more » « less
- 
            The ways in which genetic variation is distributed within and among populations is a key determinant of the evolutionary features of a species. However, most comprehensive studies of these features have been restricted to studies of subdivision in settings known to have been driven by local adaptation, leaving our understanding of the natural dispersion of allelic variation less than ideal. Here, we present a geographic population-genomic analysis of 10 populations of the freshwater microcrustacean Daphnia pulex, an emerging model system in evolutionary genomics. These populations exhibit a pattern of moderate isolation-by-distance, with an average migration rate of 0.6 individuals per generation, and average effective population sizes of ∼650,000 individuals. Most populations contain numerous private alleles, and genomic scans highlight the presence of islands of excessively high population subdivision for more common alleles. A large fraction of such islands of population divergence likely reflect historical neutral changes, including rare stochastic migration and hybridization events. The data do point to local adaptive divergence, although the precise nature of the relevant variation is diffuse and cannot be associated with particular loci, despite the very large sample sizes involved in this study. In contrast, an analysis of between-species divergence highlights positive selection operating on a large set of genes with functions nearly nonoverlapping with those involved in local adaptation, in particular ribosome structure, mitochondrial bioenergetics, light reception and response, detoxification, and gene regulation. These results set the stage for using D. pulex as a model for understanding the relationship between molecular and cellular evolution in the context of natural environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    