skip to main content


Title: Stability Performance of a Stochastic Toolpath in Machining
The overall quality of a machined part relies heavily on the tool path that is used. Several methods of toolpath generation are currently employed. A more recently developed toolpath method is known as trochoidal milling, which is also known by several other terms, such as adaptive milling. This type of path benefits the machining process by attempting to reduce chip thickness on entry and exit to the workpiece. In doing so, utilization of this type of path can reduce tool wear and enables higher feed rates, thus improving machining efficiency.\par Another advantage of the trochoidal approach is that it often creates paths which are relatively more smooth compared to traditionally designed paths. In order to follow the contours of the final geometry, the path can yield a significant number of direction changes which result in constantly changing forces directions on the tool. Chatter, or self-excited vibration that occurs in the tool or workpiece, can therefore be mitigated or avoided since resonance does not have time to increase the vibration’s amplitude. The trochoidal milling tool path strategy typically operates on the XY plane. The operator will assign a step-down value, which defines the Z-depth at each pass. This strategy can create issues during freeform milling: because of this step-down effect, the trochoidal path may only be able to perform clearing and not finishing. This is due to the excess material left on the workpiece when a large step-down value is used. A significant and randomized variation range of the trochoidal path is tested in this research. Using this new proposed method, stochastic behavior of the toolpath is implemented. The toolpath consists entirely of circular arcs which drive the tool in a pseudo-random fashion. As the tool nears completion of the pass, the generator will give heavier probabilistic weight to points which have not yet been machined, thereby improving the efficiency of the process. It is hypothesized that this toolpath can generate the same chip-inhibiting properties of the trochoidal path while granting the ability to perform finishing cuts. The stability of such a path is determined in this work. A key parameter of this path is the allowable radius range of the circular arcs. For example, short, tight arcs or long, relatively straight arcs can be used. The influence of these arcs is analyzed against several different metrics, such as generation time, path efficiency, and chatter. The stability lobes for several radii parameters were determined. It was found that the most efficient path utilized a median parameter value, signifying a negative parabolic relationship between path efficiency and tool path radius. It was also discovered that smaller arcs result in decreased chatter. Future studies will explore the behaviors of this path when milling 3D surfaces.  more » « less
Award ID(s):
1760809
NSF-PAR ID:
10226723
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of ASME International Mechanical Engineering Conference and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Trochoidal milling is an alternative path planning strategy with the potential of increasing material removal rate per unit of tool wear and therefore productivity cost while reducing cutting energy and improving tool performance. These characteristics in addition to low radial immersion of the tool make trochoidal milling a desirable tool path in machining difficult-to-cut alloys such as nickel-based superalloys. The objective of this work is to study the dynamic stability of trochoidal milling and investigate the interaction of tool path parameters with stability behavior when machining IN718 superalloy. While there exist a few published works on dynamics of circular milling (an approximated tool path for trochoidal milling), this work addresses the dynamics of the actual trochoidal tool path. First, the chip geometry quantification strategy is explained, then the chatter characteristic equation in trochoidal milling is formulated, and chatter stability lobes are generated. It is shown that unlike a conventional end-milling operation where the geometry of chips remains constant during the cut (resulting in a single chatter diagram representing the stability region), trochoidal milling chatter diagrams evolve in time with the change in geometry (plus cutter entering and exiting angles) of each chip. The limit of the critical depth of cut is compared with conventional end milling and shown that the depth of cut can be increased up to ten times while preserving stability. Finally, the displacement response of the cutting tool is simulated in the time domain for stable and unstable cutting regions; numerical simulation and theoretical results are compared. 
    more » « less
  2. Nickel-based superalloys belong to a category of material employed for extreme conditions and exhibit high strength properties at elevated temperatures that result in poor machinability. Machining such di cult-to-cut materials like Inconel 718 leads to a high rate of tool wear, and therefore trochoidal milling toolpath is used to improve productivity and tool life. The current study analyzes the evolution of the flank wear area of the tool during trochoidal milling of Inconel 718 using an image processing methodology. It is attempted by performing experimental studies until tool failure occurs at several cutting conditions. The machining is performed through several iterations on an identical cutting path, and the number of iterations to failure is recorded. The microstructural image of a flank wear area is captured upon each iteration and processed using an image processing algorithm. It is realized that the evaluation of flank wear area can be an e ective parameter to analyze tool wear. Also, the image processing methodology works e ectively and can be extended during real-time machining. 
    more » « less
  3. The rapid wear and premature failure of the cutting tool are prone to happen due to increased forces during machining difficult-to-cut materials such as Inconel 718. The application of alternative toolpath such as trochoidal milling has significantly improved tool life and reduced the overall cycle time of the process. The wear pattern of the tool has a direct impact on the cutting forces, which increases with tool deterioration. The cutting forces in milling are modeled through the mechanistic force model and can be designated through a set of force coefficients, i.e. cutting and edge representing the shearing and ploughing phenomenon of metal removal. It has been established in the literature that tool wear has a considerable effect on the value of edge force coefficients. This paper aims to determine the in-process edge force coefficients for the trochoidal toolpath and correlates them with the corresponding flank wear area. The proposed correlation will further assist in predicting the level of flank wear area based on the force values in trochoidal milling. 
    more » « less
  4. The machining of free-form components by ball-end milling inherently produces surface error in the form of scallops. The objective of any free-form toolpath strategy is to balance productivity while minimizing scallop height to reduce surface error. Conventional machining strategies produce repeatable material patterns (constant scallop height) that may limit workpiece function in areas such as lubricity, directional anisotropy, and aesthetic appearance. These strategies also involve steady-state cuts, which allow accumulation of temperature, restrict the permissible depth and speed. In the present paper a novel complex stochastic toolpath strategy has been proposed that comprises pseudo-random circular contours concatenated into a smooth path. The approach enables continuous variation of chip load, force, and direction, and avoids conditions of continuous, periodic high cutting loads and heat accumulation. Based on initial testing, it has been observed that stochastic toolpaths are longer than conventional toolpaths. However, a decrease in average cutting loads enable reduction in cutting time with feed optimization. Additionally, the proposed strategy resulted in lower scallop height than conventional machining, thereby improving surface condition.

     
    more » « less
  5. Chatter in thin-walled parts is easy to occur in the process of machining, so the analysis of the stability of thin-walled parts has always been a research hotspot. In this paper, considering the influence of cutter eccentricity on milling force first, the coefficients of milling force were able to be identified by combining the milling force model with genetic algorithm. The results show that this method can obtain the milling force coefficients only by one experiment, and the accuracy is higher. Then the tool point Frequency Response Function (FRF) for a given combination can be calculated by using the Receptance coupling substructure analysis (RCSA) method that uses Timoshenko beam theory. Finally, the milling system can be divided into three types by aspect ratio. That is, when aspect ratio is less than 0.03, the system is considered to be a rigid tool-flexible workpiece system, but aspect ratio is between 0.03 and 0.2, the system is considered to be a flexible tool-flexible system, then aspect ratio is greater than 0.2, the system is considered to be a flexible cutter-rigid workpiece system.

     
    more » « less