- Award ID(s):
- 2011924
- PAR ID:
- 10226974
- Date Published:
- Journal Name:
- Advanced Functional Materials
- ISSN:
- 1616-301X
- Page Range / eLocation ID:
- 2008375
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Progress in the field of soft devices–that is, the types of haptic, robotic, and human-machine interfaces (HRHMIs) in which elastomers play a key role–has its basis in the science of polymeric materials and chemical synthesis. However, in examining the literature, it is found that most developments have been enabled by off-the-shelf materials used either alone or as components of physical blends and composites. A greater awareness of the methods of synthetic chemistry will accelerate the capabilities of HRHMIs. Conversely, an awareness of the applications sought by engineers working in this area may spark the development of new molecular designs and synthetic methodologies by chemists. Several applications of active, stimuli-responsive polymers, which have demonstrated or shown potential use in HRHMIs are highlighted. These materials share the fact that they are products of state-of-the-art synthetic techniques. The progress report is thus organized by the chemistry by which the materials are synthesized, including controlled radical polymerization, metal-mediated cross-coupling polymerization, ring-opening polymerization, various strategies for crosslinking, and hybrid approaches. These methods can afford polymers with multiple properties (i.e., conductivity, stimuli-responsiveness, self-healing, and degradable abilities, biocompatibility, adhesiveness, and mechanical robustness) that are of great interest to scientists and engineers concerned with soft devices for human interaction.more » « less
-
Abstract Thermo‐responsive polymers have been widely explored because of their diverse structures and functions in response to temperature stimuli. Great attention has been attracted to exploring and designing such polymers composites, which offer tremendous opportunities to build up a systematic understanding of their structure–function relationships and pave the ways for their extensive applications in electronics, soft robotics, and electrochemical energy storage devices. Here, we review the most recent research of thermal regulation in electrochemical energy storage devices (e.g., batteries, supercapacitors) via thermo‐responsive polymers. We summarize how battery components (i.e., electrolytes, separators, electrodes, or current collectors) can be coupled with thermo‐responsive polymers based on different operation mechanisms, such as volume expansion, polymerization, phase reversion, and de‐doping effects, to effectively prevent catastrophic thermal runaway. Different types of thermo‐responsive polymers are evaluated to compare their key features and/or limitations. This review is concluded with perspectives of future design strategies towards more effective thermo‐responsive polymers for battery thermal regulation.
-
Abstract Structurally complex π‐conjugated polymers hold great promise as key components in sensor and electronic devices; however, their syntheses have not been a trivial task. From a synthetic efficiency perspective, it would be more attractive to access these materials using convenient and efficient methods from simple building blocks. One such synthetic tool, multicomponent polymerization, can accommodate modularity and provide highly efficient syntheses. This feature article outlines several multicomponent polymerization strategies for the synthesis of various π‐conjugated polymers, which are classified based upon how the monomers are aligned during polymerization. Additionally, the challenges and outlooks of this field are highlighted and discussed.
-
Bioelectronic devices and components made from soft, polymer-based and hybrid electronic materials form natural interfaces with the human body. Advances in the molecular design of stretchable dielectric, conducting and semiconducting polymers, as well as their composites with various metallic and inorganic nanoscale or microscale materials, have led to more unobtrusive and conformal interfaces with tissues and organs. Nonetheless, technical challenges associated with functional performance, stability and reliability of integrated soft bioelectronic systems still remain. This Review discusses recent progress in biomedical applications of soft organic and hybrid electronic materials, device components and integrated systems for addressing these challenges. We first discuss strategies for achieving soft and stretchable devices, highlighting molecular and materials design concepts for incorporating intrinsically stretchable functional materials. We next describe design strategies and considerations on wearable devices for on-skin sensing and prostheses. Moving beneath the skin, we discuss advances in implantable devices enabled by materials and integrated devices with tissue-like mechanical properties. Finally, we summarize strategies used to build standalone integrated systems and whole-body networks to integrate wearable and implantable bioelectronic devices with other essential components, including wireless communication units, power sources, interconnects and encapsulation.more » « less
-
Abstract Hydrogels, which are hydrophilic soft porous networks, are an important class of materials of broad relevance to bioanalytical chemistry, soft‐robotics, drug delivery, and regenerative medicine. Transformer hydrogels are micro‐ and mesostructured hydrogels that display a dramatic transformation of shape, form, or dimension with associated changes in function, due to engineered local variations such as in swelling or stiffness, in response to external controls or environmental stimuli. This review describes principles that can be utilized to fabricate transformer hydrogels such as by layering, patterning, or generating anisotropy, and gradients. Transformer hydrogels are classified based on their responsivity to different stimuli such as temperature, electromagnetic fields, chemicals, and biomolecules. A survey of the current research progress suggests applications of transformer hydrogels in biomimetics, soft robotics, microfluidics, tissue engineering, drug delivery, surgery, and biomedical engineering.