skip to main content


Title: Continuous Synthesis of Hollow High‐Entropy Nanoparticles for Energy and Catalysis Applications
Abstract

Mixing multimetallic elements in hollow‐structured nanoparticles is a promising strategy for the synthesis of highly efficient and cost‐effective catalysts. However, the synthesis of multimetallic hollow nanoparticles is limited to two or three elements due to the difficulties in morphology control under the harsh alloying conditions. Herein, the rapid and continuous synthesis of hollow high‐entropy‐alloy (HEA) nanoparticles using a continuous “droplet‐to‐particle” method is reported. The formation of these hollow HEA nanoparticles is enabled through the decomposition of a gas‐blowing agent in which a large amount of gas is produced in situ to “puff” the droplet during heating, followed by decomposition of the metal salt precursors and nucleation/growth of multimetallic particles. The high active sites per mass ratio of such hollow HEA nanoparticles makes them promising candidates for energy and electrocatalysis applications. As a proof‐of‐concept, it is demonstrated that these materials can be applied as the cathode catalyst for Li–O2battery operations with a record‐high current density per catalyst mass loading of 2000 mA gcat.−1, as well as good stability and durable catalytic activity. This work offers a viable strategy for the continuous manufacturing of hollow HEA nanomaterials that can find broad applications in energy and catalysis.

 
more » « less
Award ID(s):
1804085 1809439
NSF-PAR ID:
10455621
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
46
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)Sx) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)Sxexhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)Sxnanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm−2in 1mKOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications.

     
    more » « less
  2. High entropy alloy (HEA) nanoparticles hold promise as active and durable (electro)catalysts. Understanding their formation mechanism will enable rational control over composition and atomic arrangement of multimetallic catalytic surface sites to maximize their activity. While prior reports have attributed HEA nanoparticle formation to nucleation and growth, there is a dearth of detailed mechanistic investigations. Here we utilize liquid phase transmission electron microscopy (LPTEM), systematic synthesis, and mass spectrometry (MS) to demonstrate that HEA nanoparticles form by aggregation of metal cluster intermediates. AuAgCuPtPd HEA nanoparticles are synthesized by aqueous co-reduction of metal salts with sodium borohydride in the presence of thiolated polymer ligands. Varying the metal : ligand ratio during synthesis showed that alloyed HEA nanoparticles formed only above a threshold ligand concentration. Interestingly, stable single metal atoms and sub-nanometer clusters are observed by TEM and MS in the final HEA nanoparticle solution, suggesting nucleation and growth is not the dominant mechanism. Increasing supersaturation ratio increased particle size, which together with observations of stable single metal atoms and clusters, supported an aggregative growth mechanism. Direct real-time observation with LPTEM imaging showed aggregation of HEA nanoparticles during synthesis. Quantitative analyses of the nanoparticle growth kinetics and particle size distribution from LPTEM movies were consistent with a theoretical model for aggregative growth. Taken together, these results are consistent with a reaction mechanism involving rapid reduction of metal ions into sub-nanometer clusters followed by cluster aggregation driven by borohydride ion induced thiol ligand desorption. This work demonstrates the importance of cluster species as potential synthetic handles for rational control over HEA nanoparticle atomic structure. 
    more » « less
  3. Abstract

    Mesoporous silica is a versatile material for energy, environmental, and medical applications. Here, for the first time, we report a flame aerosol synthesis method for a class of mesoporous silica with hollow structure and specific surface area exceeding 1000 m2 g−1. We show its superior performance in water purification, as a drug carrier, and in thermal insulation. Moreover, we propose a general route to produce mesoporous nanoshell‐supported nanocatalysts by in situ decoration with active nanoclusters, including noble metal (Pt/SiO2), transition metal (Ni/SiO2), metal oxide (CrO3/SiO2), and alumina support (Co/Al2O3). As a prototypical application, we perform dry reforming of methane using Ni/SiO2, achieving constant 97 % CH4and CO2conversions for more than 200 hours, dramatically outperforming an MCM‐41 supported Ni catalyst. This work provides a scalable strategy to produce mesoporous nanoshells and proposes an in situ functionalization mechanism to design and produce flexible catalysts for many reactions.

     
    more » « less
  4. Abstract

    Mesoporous silica is a versatile material for energy, environmental, and medical applications. Here, for the first time, we report a flame aerosol synthesis method for a class of mesoporous silica with hollow structure and specific surface area exceeding 1000 m2 g−1. We show its superior performance in water purification, as a drug carrier, and in thermal insulation. Moreover, we propose a general route to produce mesoporous nanoshell‐supported nanocatalysts by in situ decoration with active nanoclusters, including noble metal (Pt/SiO2), transition metal (Ni/SiO2), metal oxide (CrO3/SiO2), and alumina support (Co/Al2O3). As a prototypical application, we perform dry reforming of methane using Ni/SiO2, achieving constant 97 % CH4and CO2conversions for more than 200 hours, dramatically outperforming an MCM‐41 supported Ni catalyst. This work provides a scalable strategy to produce mesoporous nanoshells and proposes an in situ functionalization mechanism to design and produce flexible catalysts for many reactions.

     
    more » « less
  5. Abstract

    The hydrogen peroxide (H2O2) generation via the electrochemical oxygen reduction reaction (ORR) under ambient conditions is emerging as an alternative and green strategy to the traditional energy‐intensive anthraquinone process and unsafe direct synthesis using H2and O2. It enables on‐site and decentralized H2O2production using air and renewable electricity for various applications. Currently, atomically dispersed single metal site catalysts have emerged as the most promising platinum group metal (PGM)‐free electrocatalysts for the ORR. Further tuning their central metal sites, coordination environments, and local structures can be highly active and selective for H2O2production via the 2eORR. Herein, recent methodologies and achievements on developing single metal site catalysts for selective O2to H2O2reduction are summarized. Combined with theoretical computation and advanced characterization, a structure–property correlation to guide rational catalyst design with a favorable 2eORR process is aimed to provide. Due to the oxidative nature of H2O2and the derived free radicals, catalyst stability and effective solutions to improve catalyst tolerance to H2O2are emphasized. Transferring intrinsic catalyst properties to electrode performance for viable applications always remains a grand challenge. The key performance metrics and knowledge during the electrolyzer development are, therefore, highlighted.

     
    more » « less