skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF 2 ‐Containing Trisubstituted Cyclopropanes
Abstract

The difluoromethyl (CHF2) group has attracted significant attention in drug discovery and development efforts, owing to its ability to serve as fluorinated bioisostere of methyl, hydroxyl, and thiol groups. Herein, we report an efficient biocatalytic method for the highly diastereo‐ and enantioselective synthesis of CHF2‐containing trisubstituted cyclopropanes. Using engineered myoglobin catalysts, a broad range of α‐difluoromethyl alkenes are cyclopropanated in the presence of ethyl diazoacetate to give CHF2‐containing cyclopropanes in high yield (up to >99 %, up to 3000 TON) and with excellent stereoselectivity (up to >99 % de andee). Enantiodivergent selectivity and extension of the method to the stereoselective cyclopropanation of mono‐ and trifluoromethylated olefins was also achieved. This methodology represents a powerful strategy for the stereoselective synthesis of high‐value fluorinated building blocks for medicinal chemistry, as exemplified by the formal total synthesis of a CHF2isostere of a TRPV1 inhibitor.

 
more » « less
NSF-PAR ID:
10227191
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
13
ISSN:
1433-7851
Page Range / eLocation ID:
p. 7072-7076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The difluoromethyl (CHF2) group has attracted significant attention in drug discovery and development efforts, owing to its ability to serve as fluorinated bioisostere of methyl, hydroxyl, and thiol groups. Herein, we report an efficient biocatalytic method for the highly diastereo‐ and enantioselective synthesis of CHF2‐containing trisubstituted cyclopropanes. Using engineered myoglobin catalysts, a broad range of α‐difluoromethyl alkenes are cyclopropanated in the presence of ethyl diazoacetate to give CHF2‐containing cyclopropanes in high yield (up to >99 %, up to 3000 TON) and with excellent stereoselectivity (up to >99 % de andee). Enantiodivergent selectivity and extension of the method to the stereoselective cyclopropanation of mono‐ and trifluoromethylated olefins was also achieved. This methodology represents a powerful strategy for the stereoselective synthesis of high‐value fluorinated building blocks for medicinal chemistry, as exemplified by the formal total synthesis of a CHF2isostere of a TRPV1 inhibitor.

     
    more » « less
  2. Abstract

    Trifluoromethyl‐substituted cyclopropanes (CF3‐CPAs) constitute an important class of compounds for drug discovery. While several methods have been developed for synthesis oftrans‐CF3‐CPAs, stereoselective production of correspondingcis‐diastereomers remains a formidable challenge. We report a biocatalyst for diastereo‐ and enantio‐selective synthesis ofcis‐CF3‐CPAs with activity on a variety of alkenes. We found that an engineered protoglobin fromAeropyrnum pernix(ApePgb) can catalyze this unusual reaction at preparative scale with low‐to‐excellent yield (6–55 %) and enantioselectivity (17–99 % ee), depending on the substrate. Computational studies revealed that the steric environment in the active site of the protoglobin forced iron‐carbenoid and substrates to adopt a pro‐cisnear‐attack conformation. This work demonstrates the capability of enzyme catalysts to tackle challenging chemistry problems and provides a powerful means to expand the structural diversity of CF3‐CPAs for drug discovery.

     
    more » « less
  3. Abstract

    Trifluoromethyl‐substituted cyclopropanes (CF3‐CPAs) constitute an important class of compounds for drug discovery. While several methods have been developed for synthesis oftrans‐CF3‐CPAs, stereoselective production of correspondingcis‐diastereomers remains a formidable challenge. We report a biocatalyst for diastereo‐ and enantio‐selective synthesis ofcis‐CF3‐CPAs with activity on a variety of alkenes. We found that an engineered protoglobin fromAeropyrnum pernix(ApePgb) can catalyze this unusual reaction at preparative scale with low‐to‐excellent yield (6–55 %) and enantioselectivity (17–99 % ee), depending on the substrate. Computational studies revealed that the steric environment in the active site of the protoglobin forced iron‐carbenoid and substrates to adopt a pro‐cisnear‐attack conformation. This work demonstrates the capability of enzyme catalysts to tackle challenging chemistry problems and provides a powerful means to expand the structural diversity of CF3‐CPAs for drug discovery.

     
    more » « less
  4. Abstract

    A chemobiocatalytic strategy for the highly stereoselective synthesis of nitrile‐substituted cyclopropanes is reported. The present approach relies on an asymmetric olefin cyclopropanation reaction catalyzed by an engineered myoglobin in the presence of ex situ generated diazoacetonitrile within a compartmentalized reaction system. This method enabled the efficient transformation of a broad range of olefin substrates at a preparative scale with up to 99.9 % de and ee and up to 5600 turnovers. The enzymatic product could be further elaborated to afford a variety of functionalized chiral cyclopropanes. This work expands the range of synthetically valuable, abiotic transformations accessible through biocatalysis and paves the way to the practical and safe exploitation of diazoacetonitrile in biocatalytic carbene transfer reactions.

     
    more » « less
  5. Abstract

    A chemobiocatalytic strategy for the highly stereoselective synthesis of nitrile‐substituted cyclopropanes is reported. The present approach relies on an asymmetric olefin cyclopropanation reaction catalyzed by an engineered myoglobin in the presence of ex situ generated diazoacetonitrile within a compartmentalized reaction system. This method enabled the efficient transformation of a broad range of olefin substrates at a preparative scale with up to 99.9 % de and ee and up to 5600 turnovers. The enzymatic product could be further elaborated to afford a variety of functionalized chiral cyclopropanes. This work expands the range of synthetically valuable, abiotic transformations accessible through biocatalysis and paves the way to the practical and safe exploitation of diazoacetonitrile in biocatalytic carbene transfer reactions.

     
    more » « less