skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semeru: A Memory-Disaggregated Managed Runtime
Resource-disaggregated architectures have risen in popularity for large datacenters. However, prior disaggregation systems are designed for native applications; in addition, all of them require applications to possess excellent locality to be efficiently executed. In contrast, programs written in managed languages are subject to periodic garbage collection (GC), which is a typical graph workload with poor locality. Although most datacenter applications are written in managed languages, current systems are far from delivering acceptable performance for these applications. This paper presents Semeru, a distributed JVM that can dramatically improve the performance of managed cloud applications in a memory-disaggregated environment. Its design possesses three major innovations: (1) a universal Java heap, which provides a unified abstraction of virtual memory across CPU and memory servers and allows any legacy program to run without modifications; (2) a distributed GC, which offloads object tracing to memory servers so that tracing is performed closer to data; and (3) a swap system in the OS kernel that works with the runtime to swap page data efficiently. An evaluation of Semeru on a set of widely-deployed systems shows very promising results.  more » « less
Award ID(s):
1764077
PAR ID:
10227338
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
14th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Far-memory techniques that enable applications to use remote memory are increasingly appealing in modern datacenters, supporting applications’ large memory footprint and improving machines’ resource utilization. Unfortunately, most far-memory techniques focus on OS-level optimizations and are agnostic to managed runtimes and garbage collections (GC) underneath applications written in high-level languages. With different object-access patterns from applications, GC can severely interfere with existing far-memory techniques, breaking prefetching algorithms and causing severe local-memory misses. We developed MemLiner, a runtime technique that improves the performance of far-memory systems by “lining up” memory accesses from the application and the GC so that they follow similar memory access paths, thereby (1)reducing the local-memory working set and (2) improving remote-memory prefetching through simplified memory access patterns. We implemented MemLiner in two widely-used GCs in OpenJDK: G1 and Shenandoah. Our evaluation with a range of widely-deployed cloud systems shows MemLiner improves applications’ end-to-end performance by up to 2.5x. 
    more » « less
  2. Far-memory techniques that enable applications to use remote memory are increasingly appealing in modern data centers, supporting applications’ large memory footprint and improving machines’ resource utilization. Unfortunately, most far-memory techniques focus on OS-level optimizations and are agnostic to managed runtimes and garbage collections (GC) underneath applications written in high-level languages. With different object-access patterns from applications, GC can severely interfere with existing far-memory techniques, breaking remote memory prefetching algorithms and causing severe local-memory misses. We developed MemLiner, a runtime technique that improves the performance of far-memory systems by aligning memory accesses from application and GC threads so that they follow similar memory access paths, thereby (1) reducing the local-memory working set and (2) improving remote-memory prefetching through simplified memory access patterns. We implemented MemLiner in two widely used GCs in OpenJDK: G1 and Shenandoah. Our evaluation with a range of widely deployed cloud systems shows that MemLiner improves applications’ end-to-end performance by up to3.3×and reduces applications’ tail latency by up to220.0×. 
    more » « less
  3. To process real-world datasets, modern data-parallel systems often require extremely large amounts of memory, which are both costly and energy inefficient. Emerging non-volatile memory (NVM) technologies offer high capacity compared to DRAM and low energy compared to SSDs. Hence, NVMs have the potential to fundamentally change the dichotomy between DRAM and durable storage in Big Data processing. However, most Big Data applications are written in managed languages and executed on top of a managed runtime that already performs various dimensions of memory management. Supporting hybrid physical memories adds a new dimension, creating unique challenges in data replacement. This article proposes Panthera, a semantics-aware, fully automated memory management technique for Big Data processing over hybrid memories. Panthera analyzes user programs on a Big Data system to infer their coarse-grained access patterns, which are then passed to the Panthera runtime for efficient data placement and migration. For Big Data applications, the coarse-grained data division information is accurate enough to guide the GC for data layout, which hardly incurs overhead in data monitoring and moving. We implemented Panthera in OpenJDK and Apache Spark. Based on Big Data applications’ memory access pattern, we also implemented a new profiling-guided optimization strategy, which is transparent to applications. With this optimization, our extensive evaluation demonstrates that Panthera reduces energy by 32–53% at less than 1% time overhead on average. To show Panthera’s applicability, we extend it to QuickCached, a pure Java implementation of Memcached. Our evaluation results show that Panthera reduces energy by 28.7% at 5.2% time overhead on average. 
    more » « less
  4. Managed programming languages including Java and Scala are very popular for data analytics and mobile applications. However, they often face challenging issues due to the overhead caused by the automatic memory management to detect and reclaim free available memory. It has been observed that during their Garbage Collection (GC), excessively long pauses can account for up to 40 % of the total execution time. Therefore, mitigating the GC overhead has been an active research topic to satisfy today's application requirements. This paper proposes a new technique called SwapVA to improve data copying in the copying/moving phases of GCs and reduce the GC pause time, thereby mitigating the issue of GC overhead. Our contribution is twofold. First, a SwapVA system call is introduced as a zero-copy technique to accelerate the GC copying/moving phase. Second, for the demonstration of its effectiveness, we have integrated SwapVA into SVAGC as an implementation of scalable Full GC on multi-core systems. Based on our results, the proposed solutions can dramatically reduce the GC pause in applications with large objects by as much as 70.9% and 97%, respectively, in the Sparse.large/4 (one quarter of the default input size) and Sigverify benchmarks. 
    more » « less
  5. Multi-Version eXecution (MVX) is a technique that deploys many equivalent versions of the same program — variants — as a single program, with direct applications in important fields such as: security, reliability, analysis, and availability. MVX can be seen as “online Record/Replay (RR)”, as RR captures a program’s execution as a log stored on disk that can later be replayed to observe the same execution. Unfortunately, current MVX techniques target programs written in C/C++ and do not support programs written in managed languages, which are the vast majority of code written nowadays. This paper presents the design, implementation, and evaluation of Jmvx— a novel system for performing MVX and RR on programs written in managed languages. Jmvx supports programs written in Java by intercepting automatically identified non-deterministic methods, via a novel dynamic analysis technique, and ensuring that all variants execute the same methods and obtain the same data. Jmvx supports multi-threaded programs, by capturing synchronization operations in one variant, and ensuring all other variants follow the same ordering. We validated that Jmvx supports MVX and RR by applying it to a suite of benchmarks representative of programs written in Java. Internally, Jmvx uses a circular buffer located in shared memory between JVMs to enable fast communication between all variants, averaging 5% |47% performance overhead when performing MVX with multithreading support disabled|enabled, 8% |25% when recording, and 13% |73% when replaying. 
    more » « less