skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anomalous normal fluid response in a chiral superconductor UTe2
Abstract Chiral superconductors have been proposed as one pathway to realize Majorana normal fluid at its boundary. However, the long-sought 2D and 3D chiral superconductors with edge and surface Majorana normal fluid are yet to be conclusively found. Here, we report evidence for a chiral spin-triplet pairing state of UTe2with surface normal fluid response. The microwave surface impedance of the UTe2crystal was measured and converted to complex conductivity, which is sensitive to both normal and superfluid responses. The anomalous residual normal fluid conductivity supports the presence of a significant normal fluid response. The superfluid conductivity follows the temperature behavior predicted for an axial spin-triplet state, which is further narrowed down to a chiral spin-triplet state with evidence of broken time-reversal symmetry. Further analysis excludes trivial origins for the observed normal fluid response. Our findings suggest that UTe2can be a new platform to study exotic topological excitations in higher dimension.  more » « less
Award ID(s):
2004386
PAR ID:
10227413
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Considerable evidence shows that the heavy fermion material UTe2is a spin-triplet superconductor, possibly manifesting time-reversal symmetry breaking, as measured by Kerr effect below the critical temperature, in some samples. Such signals can arise due to a chiral orbital state or possible nonunitary pairing. Although experiments at low temperatures appear to be consistent with point nodes in the spectral gap, the detailed form of the order parameter and even the nodal positions are not yet determined. Thermal conductivity measurements can extend to quite low temperatures, and varying the heat current direction should be able to provide information on the order parameter structure. Here, we derive a general expression for the thermal conductivity of a spin-triplet superconductor and use it to compare the low-temperature behavior of various states proposed for UTe2
    more » « less
  2. Symmetry properties of the order parameter are among the most fundamental characteristics of a superconductor. UTe2, which was found to feature an exceedingly large upper critical field and striking reentrant behavior at low temperatures, is widely believed to possess a spin-triplet pairing symmetry. However, unambiguous evidence for such a pairing symmetry is still lacking, especially at zero and low magnetic fields. The presence of an inversion crystalline symmetry in UTe2requires that, if it is indeed a spin-triplet superconductor, the order parameter must be of odd parity. We report here phase-sensitive measurements of the symmetry of the orbital part of the order parameter using the Josephson effect. The selection rule in the orientation dependence of the Josephson coupling between In, ans-wave superconductor, and UTe2suggests strongly that UTe2possesses the odd-parity pairing state of B1usymmetry near zero magnetic field, making it a spin-triplet superconductor. We also report the apparent formation of Andreev surface bound states on the (1−10) surface of UTe2
    more » « less
  3. null (Ed.)
    Abstract The investigation of transport properties in normal liquid helium-3 and its topological superfluid phases provides insights into related phenomena in electron fluids, topological materials, and putative topological superconductors. It relies on the measurement of mass, heat, and spin currents, due to system neutrality. Of particular interest is transport in strongly confining channels of height approaching the superfluid coherence length, to enhance the relative contribution of surface excitations, and suppress hydrodynamic counterflow. Here we report on the thermal conduction of helium-3 in a 1.1  μ m high channel. In the normal state we observe a diffusive thermal conductivity that is approximately temperature independent, consistent with interference of bulk and boundary scattering. In the superfluid, the thermal conductivity is only weakly temperature dependent, requiring detailed theoretical analysis. An anomalous thermal response is detected in the superfluid which we propose arises from the emission of a flux of surface excitations from the channel. 
    more » « less
  4. Abstract A growing number of two-dimensional superconductors are being discovered in the family of exfoliated van der Waals materials. Due to small sample volume, the superfluid response of these materials has not been characterized. Here, we use a local magnetic probe to directly measure this key property of the tunable, gate-induced superconducting state in MoS2. We find that the backgate changes the transition temperature non-monotonically whereas the superfluid stiffness at low temperature and the normal state conductivity monotonically increase. In some devices, we find direct signatures in agreement with a Berezinskii-Kosterlitz-Thouless transition, whereas in others we find a broadened onset of the superfluid response. We show that the observed behavior is consistent with disorder playing an important role in determining the properties of superconducting MoS2. Our work demonstrates that magnetic property measurements are within reach for superconducting devices based on exfoliated sheets and reveals that the superfluid response significantly deviates from simple BCS-like behavior. 
    more » « less
  5. Abstract Charge, spin and Cooper-pair density waves have now been widely detected in exotic superconductors. Understanding how these density waves emerge — and become suppressed by external parameters — is a key research direction in condensed matter physics. Here we study the temperature and magnetic-field evolution of charge density waves in the rare spin-triplet superconductor candidate UTe2using scanning tunneling microscopy/spectroscopy. We reveal that charge modulations composed of three different wave vectors gradually weaken in a spatially inhomogeneous manner, while persisting to surprisingly high temperatures of 10–12 K. We also reveal an unexpected decoupling of the three-component charge density wave state. Our observations match closely to the temperature scale potentially related to short-range magnetic correlations, providing a possible connection between density waves observed by surface probes and intrinsic bulk features. Importantly, charge density wave modulations become suppressed with magnetic field both below and above superconductingTcin a comparable manner. Our work points towards an intimate connection between hidden magnetic correlations and the origin of the unusual charge density waves in UTe2
    more » « less