skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shade is the most important factor limiting growth of a woody range expander
The expansion of woody plants into grasslands and old fields is often ascribed to fire suppression and heavy grazing, especially by domestic livestock. However, it is also recognized that nutrient availability and interspecific competition with grasses and other woody plants play a role in certain habitats. I examined potential factors causing range- and niche expansion by the eastern redcedar Juniperus virginiana , the most widespread conifer in the eastern United States, in multifactorial experiments in a greenhouse. Historical records suggest that the eastern redcedar is a pioneer forest species, and may be replaced as the forest increases in tree density due to shading. Another possible factor that affects its distribution may be nutrient availability, which is higher in old fields and other disturbed lands than in undisturbed habitats. In its historic range, eastern redcedars are particularly abundant on limestone outcrops, often termed ‘cedar barrens’. However, the higher abundance on limestone could be due to reduced interspecific competition rather than a preference for high pH substrates. I manipulated shade, fertilization, lime, and interspecific competition with a common dominant tree, the post oak Quercus stellata . In a separate experiment, I manipulated fire and grass competition. I measured growth rates (height and diameter) and above- and belowground biomass at the end of both experiments. I also measured total non-structural carbohydrates and nitrogen in these plants. Shade was the most important factor limiting the growth rates and biomass of eastern redcedars. I also found that there were significant declines in nitrogen and non-structural carbohydrates when shaded. These results are consistent with the notion that the eastern redcedar is a pioneer forest species, and that shade is the reason that these redcedars are replaced by other tree species. In the second experiment, I found that a single fire had a negative effect on young trees. There was no significant effect of competition with grass, perhaps because the competitive effect was shading by grasses and not nutrient depletion. Overall, the effects of shade were far more apparent than the effects of fire.  more » « less
Award ID(s):
1915908
PAR ID:
10227473
Author(s) / Creator(s):
Editor(s):
Gomory, Dusan
Date Published:
Journal Name:
PLOS ONE
Volume:
15
Issue:
12
ISSN:
1932-6203
Page Range / eLocation ID:
e0242003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Guo, Xiao (Ed.)
    Eastern redcedar Juniperus virginiana is encroaching into new habitats, which will affect native ecosystems as this species competes with other plants for available resources, including water. We designed a greenhouse experiment to investigate changes in soil moisture content and rooting depths of two-year-old J . virginiana saplings growing with or without competition. We had four competition treatments: 1) none, 2) with a native tree ( Quercus stellata ), 3) with an invasive grass ( Bromus inermis ), and 4) with both Q . stellata and B . inermis . We measured soil moisture content over two years as well as root length, total biomass, relative water content, midday water potential, and mortality at the end of the experiment. When J . virginiana and B . inermis grew together, water depletion occurred at both 30–40 cm and 10–20 cm. Combined with root length results, we can infer that J . virginiana most likely took up water from the deeper layers whereas B . inermis used water from the top layers. We found a similar pattern of water depletion and uptake when J . virginiana grew with Q . stellata , indicating that J . virginiana took up water from the deeper layers and Q . stellata used water mostly from the top soil layers. When the three species grew together, we found root overlap between J . virginiana and Q . stellata . Despite the root overlap, our relative water content and water potential indicate that J . virginiana was not water stressed in any of the plant combinations. Regardless, J . virginiana saplings had less total biomass in treatments with B . inermis and we recorded a significantly higher mortality when J . virginiana grew with both competitors. Root overlap and partitioning can affect how J . virginiana perform and adapt to new competitors and can allow their co-existence with grasses and other woody species, which can facilitate J . virginiana encroachment into grasslands and woodlands. Our data also show that competition with both Q . stellata and B . inermis could limit establishment, regardless of water availability. 
    more » « less
  2. Abstract Fire exclusion and mismanaged grazing are globally important drivers of environmental change in mesic C4grasslands and savannas. Although interest is growing in prescribed fire for grassland restoration, we have little long‐term experimental evidence of the influence of burn season on the recovery of herbaceous plant communities, encroachment by trees and shrubs, and invasion by exotic grasses. We conducted a prescribed fire experiment (seven burns between 2001 and 2019) in historically fire‐excluded and overgrazed grasslands of central Texas. Sites were assigned to one of four experimental treatments: summer burns (warm season, lightning season), fall burns (early cool season), winter burns (late cool season), or unburned (fire exclusion). To assess restoration outcomes of the experiment, in 2019, we identified old‐growth grasslands to serve as reference sites. Herbaceous‐layer plant communities in all experimental sites were compositionally and functionally distinct from old‐growth grasslands, with little recovery of perennial C4grasses and long‐lived forbs. Unburned sites were characterized by several species of tree, shrub, and vine; summer sites were characterized by certain C3grasses and forbs; and fall and winter sites were intermediate in composition to the unburned and summer sites. Despite compositional differences, all treatments had comparable plot‐level plant species richness (range 89–95 species/1000 m2). At the local‐scale, summer sites (23 species/m2) and old‐growth grasslands (20 species/m2) supported greater richness than unburned sites (15 species/m2), but did not differ significantly from fall or winter sites. Among fire treatments, summer and winter burns most consistently produced the vegetation structure of old‐growth grasslands (e.g., mean woody canopy cover of 9%). But whereas winter burns promoted the invasive grassBothriochloa ischaemumby maintaining areas with low canopy cover, summer burns simultaneously limited woody encroachment and controlledB. ischaemuminvasion. Our results support a growing body of literature that shows that prescribed fire alone, without the introduction of plant propagules, cannot necessarily restore old‐growth grassland community composition. Nonetheless, this long‐term experiment demonstrates that prescribed burns implemented in the summer can benefit restoration by preventing woody encroachment while also controlling an invasive grass. We suggest that fire season deserves greater attention in grassland restoration planning and ecological research. 
    more » « less
  3. Abstract Savanna tree species vary in the magnitude of their response to grass competition, but the functional traits that explain this variation remain largely unknown. To address this gap, we grew seedlings of 10 savanna tree species with and without grasses in a controlled greenhouse experiment. We found strong interspecific differences in tree competitive response, which was positively related to photosynthesis rates, suggesting a trade‐off between the ability to grow well under conditions of low and high grass biomass across tree species. We also found no competitive effect of tree seedlings on grass, suggesting strong tree‐grass competitive asymmetry. Our results identify a potentially important trade‐off that enhances our ability to predict how savanna tree communities might respond to variation in grass competition. 
    more » « less
  4. White-tailed deer (Odocoileus virginianus) hunting is an important economic activity associated with the management of forests and rangelands in the USA, with over $12.9 billion dollars of related annual expenditures. Reducing tree cover through thinning and prescribed fire both have the potential to increase the quantity and quality of deer forage. We evaluated the long-term impacts of eight different combinations of fire return intervals and tree harvest on forage productivity and protein content of the forage. Based on management regime, study units ranged from savanna to closed-canopy forest. Aboveground net primary production (ANPP) of six functional groups (grass, panicum, forb, legume, woody, sedge) of understory vegetation was measured in October 2019 and 2020 using destructive sampling. Samples for foliar crude protein (CP) concentration were collected in spring, summer, and fall of 2020. Total understory ANPP ranged from 2.9 to 466.3 g m− 2 and was up to 566% greater in savanna systems maintained by frequent fire (return interval of three years or less) than in non-burned forest treatments. Annual burning resulted in ANPP dominated by herbaceous plants composed mostly of firetolerant grasses (e.g., Andropogon gerardii, Schizachyrium scoparium). Longer fire return intervals or no fire resulted in roughly equal ANPP from understory woody and herbaceous species. Crude protein concentrations were up to 45.7% greater in the woodland and forest units than in the savanna units for seven of the eleven species sampled. The greater CP in the forests was most noticeable in the summer when deer needs for quality forage are substantial. Increased protein concentrations of understory species in the forests, but greater ANPP in the savannas indicate that managing for a mix of savanna and woodland could be ideal for balancing forage quantity with increased forage protein. 
    more » « less
  5. Summary Savannas cover a significant fraction of the Earth's land surface. In these ecosystems, C3trees and C4grasses coexist persistently, but the mechanisms explaining coexistence remain subject to debate. Different quantitative models have been proposed to explain coexistence, but these models make widely contrasting assumptions about which mechanisms are responsible for savanna persistence. Here, we show that no single existing model fully captures all key elements required to explain tree–grass coexistence across savanna rainfall gradients, but many models make important contributions. We show that recent empirical work allows us to combine many existing elements with new ideas to arrive at a synthesis that combines elements of two dominant frameworks: Walter's two‐layer model and demographic bottlenecks. We propose that functional rooting separation is necessary for coexistence and is the crux of the coexistence problem. It is both well‐supported empirically and necessary for tree persistence, given the comprehensive grass superiority for soil moisture acquisition. We argue that eventual tree dominance through shading is precluded by ecohydrological constraints in dry savannas and by fire and herbivores in wet savannas. Strong asymmetric grass–tree competition for soil moisture limits tree growth, exposing trees to persistent demographic bottlenecks. 
    more » « less