Inflammasomes are filamentous signaling platforms essential for host defense against various intracellular calamities such as pathogen invasion and genotoxic stresses. However, dysregulated inflammasomes cause an array of human diseases including autoinflammatory disorders and cancer. It was recently identified that endogenous pyrin-only-proteins (POPs) regulate inflammasomes by directly inhibiting their filament assembly. Here, by combining Rosetta in silico, in vitro, and in cellulo methods, we investigate the target specificity and inhibition mechanisms of POPs. We find here that POP1 is ineffective in directly inhibiting the central inflammasome adaptor ASC. Instead, POP1 acts as a decoy and targets the assembly of upstream receptor pyrin-domain (PYD) filaments such as those of AIM2, IFI16, NLRP3, and NLRP6. Moreover, not only does POP2 directly suppress the nucleation of ASC, but it can also inhibit the elongation of receptor filaments. In addition to inhibiting the elongation of AIM2 and NLRP6 filaments, POP3 potently suppresses the nucleation of ASC. Our Rosetta analyses and biochemical experiments consistently suggest that a combination of favorable and unfavorable interactions between POPs and PYDs is necessary for effective recognition and inhibition. Together, we reveal the intrinsic target redundancy of POPs and their inhibitory mechanisms.
more »
« less
Distinct axial and lateral interactions within homologous filaments dictate the signaling specificity and order of the AIM2-ASC inflammasome
Abstract Inflammasomes are filamentous signaling platforms integral to innate immunity. Currently, little is known about how these structurally similar filaments recognize and distinguish one another. A cryo-EM structure of the AIM2PYDfilament reveals that the architecture of the upstream filament is essentially identical to that of the adaptor ASCPYDfilament. In silico simulations using Rosetta and molecular dynamics followed by biochemical and cellular experiments consistently demonstrate that individual filaments assemble bidirectionally. By contrast, the recognition between AIM2 and ASC requires at least one to be oligomeric and occurs in a head-to-tail manner. Using in silico mutagenesis as a guide, we also identify specific axial and lateral interfaces that dictate the recognition and distinction between AIM2 and ASC filaments. Together, the results here provide a robust framework for delineating the signaling specificity and order of inflammasomes.
more »
« less
- Award ID(s):
- 1845003
- PAR ID:
- 10227679
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Upon sensing cytosolic- and/or viral double-stranded (ds)DNA, absent-in-melanoma-2 (AIM2)-like-receptors (ALRs) assemble into filamentous signaling platforms to initiate inflammatory responses. The versatile yet critical roles of ALRs in host innate defense are increasingly appreciated; however, the mechanisms by which AIM2 and its related IFI16 specifically recognize dsDNA over other nucleic acids remain poorly understood (i.e. single-stranded (ss)DNA, dsRNA, ssRNA and DNA:RNA hybrid). Here, we find that although AIM2 can interact with various nucleic acids, it preferentially binds to and assembles filaments faster on dsDNA in a duplex length-dependent manner. Moreover, AIM2 oligomers assembled on nucleic acids other than dsDNA not only display less ordered filamentous structures, but also fail to induce the polymerization of downstream ASC. Likewise, although showing broader nucleic acid selectivity than AIM2, IFI16 binds to and oligomerizes most readily on dsDNA in a duplex length-dependent manner. Nevertheless, IFI16 fails to form filaments on single-stranded nucleic acids and does not accelerate the polymerization of ASC regardless of bound nucleic acids. Together, we reveal that filament assembly is integral to nucleic acid distinction by ALRs.more » « less
-
ABSTRACT The protein ASC polymerizes into intricate filament networks to assemble the inflammasome, a filamentous multiprotein complex that triggers the inflammatory response. ASC carries two Death Domains integrally involved in protein self-association for filament assembly. We have leveraged this behavior to create non-covalent, pH-responsive hydrogels of full-length, folded ASC by carefully controlling the pH as a critical factor in the polymerization process. We show that natural variants of ASC (ASC isoforms) involved in inflammasome regulation also undergo hydrogelation. To further demonstrate this general capability, we engineered proteins inspired in the ASC structure that successfully form hydrogels. We analyzed the structural network of the natural and engineered protein hydrogels using transmission and scanning electron microscopy, and studied their viscoelastic behavior by shear rheology. Our results reveal one of the very few examples of hydrogels created by the self-assembly of globular proteins and domains in their native conformation and show that Death Domains can be used alone or as building blocks to engineer bioinspired hydrogels.more » « less
-
Gelsolin is a calcium (Ca2+) dependent, pH sensitive actin-binding protein that regulates actin filament dynamics to remodel the actin cytoskeleton. It is known that gelsolin binding induces conformational changes of actin filaments, leading to filament severing. However, the influence of physiological conditions, such as pH variations, on gelsolin-mediated filament severing activities, mechanics and conformations remains unclear despite their role in actin-actin interactions. Using Total Internal Reflection Fluorescence (TIRF) microscopy imaging and pyrene fluorescence assays, we demonstrate that filament severing efficiencies by gelsolin are enhanced in acidic conditions. In addition, analysis of filament thermal fluctuations using TIRF reveals that gelsolin binding stiffens actin filaments. Furthermore, we show that gelsolin binding induces conformational changes in filaments by measuring the filament half-pitch using high resolution Atomic Force Microscopy imaging. Together, our results suggest that pH modulation plays a key role in gelsolin-mediated filament severing activities, bending mechanics, and conformational changes, which have implications in many cellular processes including cell motility and morphogenesis.more » « less
-
Abstract While many Lyαblobs (LABs) are found in and around several well-known protoclusters at high redshift, how they trace the underlying large-scale structure is still poorly understood. In this work, we utilize 5352 Lyαemitters (LAEs) and 129 LABs atz= 3.1 identified over a ∼9.5 deg2area in early data from the ongoing One-hundred-deg2DECam Imaging in Narrowbands (ODIN) survey to investigate this question. Using LAEs as tracers of the underlying matter distribution, we identify overdense structures as galaxy groups, protoclusters, and filaments of the cosmic web. We find that LABs preferentially reside in regions of higher-than-average density and are located in closer proximity to overdense structures, which represent the sites of protoclusters and their substructures. Moreover, protoclusters hosting one or more LABs tend to have a higher descendant mass than those which do not. Blobs are also strongly associated with filaments of the cosmic web, with ∼70% of the population being within a projected distance of ∼2.4 pMpc from a filament. We show that the proximity of LABs to protoclusters is naturally explained by their association with filaments as large cosmic structures are where many filaments converge. The contiguous wide-field coverage of the ODIN survey allows us to establish firmly a connection between LABs as a population and filaments of the cosmic web for the first time.more » « less
An official website of the United States government
