Abstract The near-horizon region of a black hole impacts linear (LP) and circular polarization (CP) through strong lensing of photons, adding large-scale symmetries and anti-symmetries to the polarized image. To probe the signature of lensing in polarimetry, we utilize a geometric model of concentric Gaussian rings of equal radius to investigate the transition in the Fourier plane at which the photon ring signal begins to dominate over the direct image. We find analytic, closed-form expressions for the transition radii in total intensity, LP, and CP, wherein the resultant formulae are composed of ratios of tunable image parameters, with the overall “scale” set primarily by the thickness of the direct image. Using these formulae, we compute the transition radii for time-averaged images of M87* simulations at 230 GHz, studying both magnetically arrested disk (MAD) and standard and normal evolution configurations for various spin and electron heating models. We compare geometric values to radii obtained directly from the simulations through a coherent averaging scheme. We find that nearly all MAD models have a photon ring-dominated CP signal on long baselines shorter than Earth's diameter at 230 GHz. Across favored models for the M87* accretion flow identified by the Event Horizon Telescope (EHT) polarimetric constraints, we quantify the sensitivity and antenna size requirements for the next-generation EHT and the Black Hole Explorer orbiter to detect these features. We find that the stringent requirements for CP favor explorations using long baselines on the ground, while LP remains promising on Earth-space baselines.
more »
« less
Accurate closed-form trajectories of light around a Kerr black hole using asymptotic approximants
Highly accurate closed-form expressions that describe the full trajectory of photons propagating in the equatorial plane of a Kerr black hole are obtained using asymptotic approximants. This work extends a prior study of the overall bending angle for photons (Barlow et al 2017 Class. Quantum Grav. 34 135017). The expressions obtained provide accurate trajectory predictions for arbitrary spin and impact parameters, and provide significant time advantages compared with numerical evaluation of the elliptic integrals that describe photon trajectories. To construct approximants, asymptotic expansions for photon deflection are required in various limits. To this end, complete expansions are derived for the azimuthal angle as a function of radial distance from the black hole in the far-distance and closest-approach (pericenter) limits, and new coefficients are reported for the bending angle in the weak-field limit (large impact parameter).
more »
« less
- Award ID(s):
- 1659740
- PAR ID:
- 10227714
- Date Published:
- Journal Name:
- Classical and quantum gravity
- Volume:
- 35
- Issue:
- 20
- ISSN:
- 1361-6382
- Page Range / eLocation ID:
- 205009
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We compute the amplitude for an excited string in any precisely specified state to decay into another excited string in any precisely specified state, via emission of a tachyon or photon. For generic and highly excited string states, the amplitude is a complicated function of the outgoing kinematic angle, sensitive to the precise state. We compute the square of this amplitude, averaged over polarizations of the ingoing string and summed over polarizations of the outgoing string. The seeming intractability of these calculations is made possible by extracting amplitudes involving excited strings from amplitudes involving tachyons and a large number of photons; the number of photons grows with the complexity of the excited string state. Our work is in the spirit of the broad range of recent studies of statistical mechanics and chaos for quantum many-body systems. The number of different excited string states at a given mass is exponentially large, and our calculation gives the emission amplitude of a single photon from each of the microstates — which, through the Horowitz-Polchinski correspondence principle, are in correspondence with black hole microstates.more » « less
-
Abstract Gravitational lensing near a black hole is strong enough that light rays can circle the event horizon multiple times. Photons emitted in multiple directions at a single event, perhaps because of localized, impulsive heating of accreting plasma, take multiple paths to a distant observer. In the Kerr geometry, each path is associated with a distinct light travel time and a distinct arrival location in the image plane, producing black hole glimmer. This sequence of arrival times and locations uniquely encodes the mass and spin of the black hole and can be understood in terms of properties of bound photon orbits. We provide a geometrically motivated treatment of Kerr glimmer and evaluate it numerically for simple hot-spot models to show that glimmer can be measured in a finite-resolution observation. We discuss potential measurement methods and implications for tests of the Kerr hypothesis.more » « less
-
Abstract The Event Horizon Telescope (EHT) recently released the first linearly polarized images of the accretion flow around the supermassive black hole Messier 87*, hereafter M87*. The spiraling polarization pattern found in the EHT images favored magnetically arrested disks as the explanation for the EHT image. With next-generation improvements to very long baseline interferometry on the horizon, understanding similar polarized features in the highly lensed structure known as the “photon ring,” where photons make multiple half orbits about the black hole before reaching the observer, will be critical to the analysis of future images. Recent work has indicated that this image region may be depolarized relative to more direct emission. We expand this observation by decomposing photon half orbits in the EHT library of simulated images of the M 87* accretion system and find that images of magnetically arrested disk simulations show a relative depolarization of the photon ring attributable to destructive interference of oppositely spiraling electric field vectors; this antisymmetry, which arises purely from strong gravitational lensing, can produce up to ∼50% depolarization in the photon ring region with respect to the direct image. In systems that are not magnetically arrested and with the exception of systems with high spin and ions and electrons of equal temperature, we find that highly lensed indirect subimages are almost completely depolarized, causing a modest depolarization of the photon ring region in the complete image. We predict that next-generation EHT observations of M 87* polarization should jointly constrain the black hole spin and the underlying emission and magnetic field geometry.more » « less
-
Abstract A search for time-directional coincidences of ultra-high-energy (UHE) photons above 10 EeV with gravitational wave (GW) events from the LIGO/Virgo runs O1 to O3 is conducted with the Pierre Auger Observatory. Due to the distinctive properties of photon interactions and to the background expected from hadronic showers, a subset of the most interesting GW events is selected based on their localization quality and distance. Time periods of 1000 s around and 1 day after the GW events are analyzed. No coincidences are observed. Upper limits on the UHE photon fluence from a GW event are derived that are typically at ∼7 MeV cm −2 (time period 1000 s) and ∼35 MeV cm −2 (time period 1 day). Due to the proximity of the binary neutron star merger GW170817, the energy of the source transferred into UHE photons above 40 EeV is constrained to be less than 20% of its total GW energy. These are the first limits on UHE photons from GW sources.more » « less
An official website of the United States government

