The cytoskeleton – a collection of polymeric filaments, molecular motors, and crosslinkers – is a foundational example of active matter, and in the cell assembles into organelles that guide basic biological functions. Simulation of cytoskeletal assemblies is an important tool for modeling cellular processes and understanding their surprising material properties. Here, we present aLENS (a Living Ensemble Simulator), a novel computational framework designed to surmount the limits of conventional simulation methods. We model molecular motors with crosslinking kinetics that adhere to a thermodynamic energy landscape, and integrate the system dynamics while efficiently and stably enforcing hard-body repulsion between filaments. Molecular potentials are entirely avoided in imposing steric constraints. Utilizing parallel computing, we simulate tens to hundreds of thousands of cytoskeletal filaments and crosslinking motors, recapitulating emergent phenomena such as bundle formation and buckling. This simulation framework can help elucidate how motor type, thermal fluctuations, internal stresses, and confinement determine the evolution of cytoskeletal active matter.
more »
« less
Weighted ensemble milestoning (WEM): A combined approach for rare event simulations.
To directly simulate rare events using atomistic molecular dynamics is a significant challenge in computational biophysics. Well-established enhanced-sampling techniques do exist to obtain the thermodynamic functions for such systems. However, developing methods for obtaining the kinetics of long timescale processes from simulation at atomic detail is comparatively less developed an area. Milestoning and the weighted ensemble (WE) method are two different stratification strategies; both have shown promise for computing long timescales of complex biomolecular processes. Nevertheless, both require a significant investment of computational resources. We have combined WE and milestoning to calculate observables in orders-of-magnitude less central processing unit and wall-clock time. Our weighted ensemble milestoning method (WEM) uses WE simulation to converge the transition probability and first passage times between milestones, followed by the utilization of the theoretical framework of milestoning to extract thermodynamic and kinetic properties of the entire process. We tested our method for a simple one-dimensional double-well potential, for an eleven-dimensional potential energy surface with energy barrier, and on the biomolecular model system alanine dipeptide. We were able to recover the free energy profiles, time correlation functions, and mean first passage times for barrier crossing events at a significantly small computational cost. WEM promises to extend the applicability of molecular dynamics simulation to slow dynamics of large systems that are well beyond the scope of present day brute-force computations.
more »
« less
- Award ID(s):
- 2028443
- PAR ID:
- 10227754
- Date Published:
- Journal Name:
- The Journal of chemical physics
- Volume:
- 152
- Issue:
- 23
- ISSN:
- 1520-9032
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The formation of biomolecular materials via dynamical interfacial processes such as self-assembly and fusion, for diverse compositions and external conditions, can be efficiently probed using ensemble Molecular Dynamics. However, this approach requires a large number of simulations when investigating a large composition phase space. In addition, there is difficulty in predicting whether each simulation is yielding biomolecular materials with the desired properties or outcomes and how long each simulation will run for. These difficulties can be overcome by rules-based management systems which include intermittent inspection, variable sampling, premature termination and extension of the individual Molecular Dynamics simulations. The automation of such a management system can significantly reduce the overhead of managing large ensembles of Molecular Dynamics simulations. To this end, a high-throughput workflows-based computational framework, Pipeline for Automating Compliance-based Elimination and Extension (PACE2), for biomolecular materials simulations is proposed. The PACE2 framework encompasses Simulation-Analysis Pipelines. Each Pipeline includes temporally separated simulation and analysis tasks. When a Molecular Dynamics simulation completes, an analysis task is triggered which evaluates the Molecular Dynamics trajectory for compliance. Compliant Molecular Dynamics simulations are extended to the next Molecular Dynamics phase with a suitable sample rate to allow additional, detailed analysis. Non-compliant Molecular Dynamics simulations are eliminated, and their computational resources are either reallocated or released. The framework is designed to run on local desktop computers and high performance computing resources. In the future, the framework will be extended to address generalized workflows and investigate other classes of materials.more » « less
-
Conventional molecular dynamics simulations are incapable of sampling many important interactions in biomolecular systems due to their high dimensionality and rough energy landscapes. To observe rare events and calculate transition rates in these systems, enhanced sampling is a necessity. In particular, the study of ligand-protein interactions necessitates a diverse ensemble of protein conformations and transition states, and for many systems, this occurs on prohibitively long time scales. Previous strategies such as WExplore that can be used to determine these types of ensembles are hindered by problems related to the regioning of conformational space. Here, we propose a novel, regionless, enhanced sampling method that is based on the weighted ensemble framework. In this method, a value referred to as “trajectory variation” is optimized after each cycle through cloning and merging operations. This method allows for a more consistent measurement of observables and broader sampling resulting in the efficient exploration of previously unexplored conformations. We demonstrate the performance of this algorithm with the N-dimensional random walk and the unbinding of the trypsin-benzamidine system. The system is analyzed using conformation space networks, the residence time of benzamidine is confirmed, and a new unbinding pathway for the trypsin-benzamidine system is found. We expect that resampling of ensembles by variation optimization will be a useful general tool to broadly explore free energy landscapes.more » « less
-
An issue for molecular dynamics simulations is that events of interest often involve timescales that are much longer than the simulation time step, which is set by the fastest timescales of the model. Because of this timescale separation, direct simulation of many events is prohibitively computationally costly. This issue can be overcome by aggregating information from many relatively short simulations that sample segments of trajectories involving events of interest. This is the strategy of Markov state models (MSMs) and related approaches, but such methods suffer from approximation error because the variables defining the states generally do not capture the dynamics fully. By contrast, once converged, the weighted ensemble (WE) method aggregates information from trajectory segments so as to yield unbiased estimates of both thermodynamic and kinetic statistics. Unfortunately, errors decay no faster than unbiased simulation in WE as originally formulated and commonly deployed. Here, we introduce a theoretical framework for describing WE that shows that the introduction of an approximate stationary distribution on top of the stratification, as in nonequilibrium umbrella sampling (NEUS), accelerates convergence. Building on ideas from MSMs and related methods, we generalize the NEUS approach in such a way that the approximation error can be reduced systematically. We show that the improved algorithm can decrease the simulation time required to achieve the desired precision by orders of magnitude.more » « less
-
Abstract Collective variable (CV)‐based enhanced sampling techniques are widely used today for accelerating barrier‐crossing events in molecular simulations. A class of these methods, which includes temperature accelerated molecular dynamics (TAMD)/driven‐adiabatic free energy dynamics (d‐AFED), unified free energy dynamics (UFED), and temperature accelerated sliced sampling (TASS), uses an extended variable formalism to achieve quick exploration of conformational space. These techniques are powerful, as they enhance the sampling of a large number of CVs simultaneously compared to other techniques. Extended variables are kept at a much higher temperature than the physical temperature by ensuring adiabatic separation between the extended and physical subsystems and employing rigorous thermostatting. In this work, we present a computational platform to perform extended phase space enhanced sampling simulations using the open‐source molecular dynamics engine OpenMM. The implementation allows users to have interoperability of sampling techniques, as well as employ state‐of‐the‐art thermostats and multiple time‐stepping. This work also presents protocols for determining the critical parameters and procedures for reconstructing high‐dimensional free energy surfaces. As a demonstration, we present simulation results on the high dimensional conformational landscapes of the alanine tripeptide in vacuo, tetra‐N‐methylglycine (tetra‐sarcosine) peptoid in implicit solvent, and the Trp‐cage mini protein in explicit water.more » « less
An official website of the United States government

