skip to main content


Title: Emissions in short-gated ns/ps/fs-LIBS for fuel-to-air ratio measurements in methane-air flames

A study of short-gated 10 nanosecond (ns), 100 picosecond (ps), and 100 femtosecond (fs) laser induced breakdown spectroscopy (LIBS) was conducted for fuel-to-air ratio (FAR) measurements in an atmospheric Hencken flame. The intent of the work is to understand which emission lines are available near the optical range in each pulse width regime and which emission ratios may be favorable for generating equivalence ratio calibration curves. The emission spectra in the range of 550–800 nm for ns-LIBS and ps-LIBS are mostly similar with slightly elevated atomic oxygen lines by ps-LIBS. Spectra from fs-LIBS show the lowest continuum background and prominent individual atomic lines, though have significantly weaker ionic emission from nitrogen. A qualitative explanation based on assumed local thermodynamic equilibrium and electron temperatures calculated by theNII(565nm)andNII(594nm)emissions is presented. In studying line emission ratios for FAR calculation, it is found thatHα<#comment/>(656nm)/NII(568nm)is best for FAR measurements with ns-LIBS and remains viable for ps-LIBS, whileHα<#comment/>(656nm)/OI(777nm)is optimal for the ps-LIBS and fs-LIBS cases. Due to low continuum background and short time delay for spectra collection, fs-LIBS is very promising for high-speed FAR measurements using short-gated LIBS.

 
more » « less
NSF-PAR ID:
10227782
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
60
Issue:
15
ISSN:
1559-128X; APOPAI
Page Range / eLocation ID:
Article No. C114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The mid-IR spectroscopic properties ofEr3+doped low-phononCsCdCl3andCsPbCl3crystals grown by the Bridgman technique have been investigated. Using optical excitations at∼<#comment/>800nmand∼<#comment/>660nm, both crystals exhibited IR emissions at∼<#comment/>1.55,∼<#comment/>2.75,∼<#comment/>3.5, and∼<#comment/>4.5µ<#comment/>mat room temperature. The mid-IR emission at 4.5 µm, originating from the4I9/2→<#comment/>4I11/2transition, showed a long emission lifetime of∼<#comment/>11.6msforEr3+dopedCsCdCl3, whereasEr3+dopedCsPbCl3exhibited a shorter lifetime of∼<#comment/>1.8ms. The measured emission lifetimes of the4I9/2state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the4I9/2→<#comment/>4I11/2transition inEr3+dopedCsCdCl3andCsPbCl3were determined to be∼<#comment/>0.14×<#comment/>10−<#comment/>20cm2and∼<#comment/>0.41×<#comment/>10−<#comment/>20cm2, respectively. The results of Judd–Ofelt analysis are presented and discussed.

     
    more » « less
  2. We report on spectroscopic measurements on the4f76s28S7/2∘<#comment/>→<#comment/>4f7(8S∘<#comment/>)6s6p(1P∘<#comment/>)8P9/2transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the6s6p(1P∘<#comment/>)8P9/2state were found to beA(151)=−<#comment/>228.84(2)MHz,B(151)=226.9(5)MHzandA(153)=−<#comment/>101.87(6)MHz,B(153)=575.4(1.5)MHz, which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results.

     
    more » « less
  3. The optical phaseϕ<#comment/>is a key quantity in the physics of light propagating through a turbulent medium. In certain respects, however, the statistics of the phasefactor,ψ<#comment/>=exp⁡<#comment/>(iϕ<#comment/>), are more relevant than the statistics of the phase itself. Here, we present a theoretical analysis of the 2D phase-factor spectrumFψ<#comment/>(κ<#comment/>)of a random phase screen. We apply the theory to four types of phase screens, each characterized by a power-law phase structure function,Dϕ<#comment/>(r)=(r/rc)γ<#comment/>(wherercis the phase coherence length defined byDϕ<#comment/>(rc)=1rad2), and a probability density functionpα<#comment/>(α<#comment/>)of the phase increments for a given spatial lag. We analyze phase screens with turbulent (γ<#comment/>=5/3) and quadratic (γ<#comment/>=2) phase structure functions and with normally distributed (i.e., Gaussian) versus Laplacian phase increments. We find that there is a pronounced bump in each of the four phase-factor spectraFψ<#comment/>(κ<#comment/>). The precise location and shape of the bump are different for the four phase-screen types, but in each case it occurs atκ<#comment/>∼<#comment/>1/rc. The bump is unrelated to the well-known “Hill bump” and is not caused by diffraction effects. It is solely a characteristic of the refractive-index statistics represented by the respective phase screen. We show that the second-orderψ<#comment/>statistics (covariance function, structure function, and spectrum) characterize a random phase screen more completely than the second-orderϕ<#comment/>counterparts.

     
    more » « less
  4. In this Letter, the electron-blocking-layer (EBL)-free AlGaN ultraviolet (UV) light-emitting diodes (LEDs) using a strip-in-a-barrier structure have been proposed. The quantum barrier (QB) structures are systematically engineered by integrating a 1 nm intrinsicAlxGa(1−<#comment/>x)Nstrip into the middle of QBs. The resulted structures exhibit significantly reduced electron leakage and improved hole injection into the active region, thus generating higher carrier radiative recombination. Our study shows that the proposed structure improves radiative recombination by∼<#comment/>220%<#comment/>, reduces electron leakage by∼<#comment/>11times, and enhances optical power by∼<#comment/>225%<#comment/>at 60 mA current injection compared to a conventional AlGaN EBL LED structure. Moreover, the EBL-free strip-in-a-barrier UV LED records the maximum internal quantum efficiency (IQE) of∼<#comment/>61.5%<#comment/>which is∼<#comment/>72%<#comment/>higher, and IQE droop is∼<#comment/>12.4%<#comment/>, which is∼<#comment/>333%<#comment/>less compared to the conventional AlGaN EBL LED structure at∼<#comment/>284.5nmwavelength. Hence, the proposed EBL-free AlGaN LED is the potential solution to enhance the optical power and produce highly efficient UV emitters.

     
    more » « less
  5. Electro-optic quantum coherent interfaces map the amplitude and phase of a quantum signal directly to the phase or intensity of a probe beam. At terahertz frequencies, a fundamental challenge is not only to sense such weak signals (due to a weak coupling with a probe in the near-infrared) but also to resolve them in the time domain. Cavity confinement of both light fields can increase the interaction and achieve strong coupling. Using this approach, current realizations are limited to low microwave frequencies. Alternatively, in bulk crystals, electro-optic sampling was shown to reach quantum-level sensitivity of terahertz waves. Yet, the coupling strength was extremely weak. Here, we propose an on-chip architecture that concomitantly provides subcycle temporal resolution and an extreme sensitivity to sense terahertz intracavity fields below 20 V/m. We use guided femtosecond pulses in the near-infrared and a confinement of the terahertz wave to a volume ofVTHz∼<#comment/>10−<#comment/>9(λ<#comment/>THz/2)3in combination with ultraperformant organic molecules (r33=170pm/V) and accomplish a record-high single-photon electro-optic coupling rate ofgeo=2π<#comment/>×<#comment/>0.043GHz, 10,000 times higher than in recent reports of sensing vacuum field fluctuations in bulk media. Via homodyne detection implemented directly on chip, the interaction results into an intensity modulation of the femtosecond pulses. The single-photon cooperativity isC0=1.6×<#comment/>10−<#comment/>8, and the multiphoton cooperativity isC=0.002at room temperature. We show><#comment/>70dBdynamic range in intensity at 500 ms integration under irradiation with a weak coherent terahertz field. Similar devices could be employed in future measurements of quantum states in the terahertz at the standard quantum limit, or for entanglement of subsystems on subcycle temporal scales, such as terahertz and near-infrared quantum bits.

     
    more » « less