skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Immune Relevant Animal Models: Opportunities and Challenges
Valid interpretation of preclinical animal models in immunology-related clinical challenges is important to solve outstanding clinical needs. Given the overall complexity of the immune system and both species- and tissue-specific immune peculiarities, the selection and design of appropriate immune-relevant animal models is, however, not following a straightforward path. The topics in this issue of the ILAR Journal provide assessments of immune-relevant animal models used in oncology, hematopoietic-, CAR-T cell- and xenotransplantation, adjuvants and infectious diseases, and immune privileged inflammation that are providing key insights into unmet human clinical needs.  more » « less
Award ID(s):
1639899
PAR ID:
10227891
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Editor(s):
Jungersen, Gregers; Piedrahita, Jorge.
Date Published:
Journal Name:
ILAR journal
Volume:
59
Issue:
3
ISSN:
1084-2020
Page Range / eLocation ID:
209-362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Significant advances have been made in the development of nanoparticles for cancer treatment in recent years. Despite promising results in preclinical animal models, cancer nanomedicines often fail in clinical trials. This failure rate could be reduced by defining stringent criteria for testing and quality control during the design and development stages, and by performing carefully planned preclinical studies in relevant animal models. This article discusses best practices for the evaluation of nanomedicines in murine tumor models. First, a recommended set of experiments to perform is introduced, including discussion of the types of data to collect during these studies. This is followed by an outline of various tumor models and their clinical relevance. Next, different routes of nanoparticle administration are overviewed, followed by a summary of important controls to include in in vivo studies of nanomedicine. Finally, animal welfare considerations are discussed, and an overview of the steps involved in achieving US Food and Drug Administration approval after animal studies are completed is provided. Researchers should use this report as a guideline for effective preclinical evaluation of cancer nanomedicine. As the community adopts best practices for in vivo testing, the rate of clinical translation of cancer nanomedicines is likely to improve. 
    more » « less
  2. Abstract Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as “proof of concept” regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality. 
    more » « less
  3. A thorough investigation into the biophysical properties of four animal-derived clinical surfactant preparations was conducted through constrained drop surfactometry under physiologically relevant conditions. This comparative study unveiled unique in vitro biophysical characteristics among these clinical surfactants, establishing correlations between their chemical composition, lateral film structure, and biophysical functionality. The acquired knowledge offers essential insights for the precise and personalized design of clinical surfactant for the treatment of respiratory distress syndrome and other respiratory conditions. 
    more » « less
  4. Abstract Cancer nanomedicines predominately rely on transport processes controlled by tumor‐associated endothelial cells to deliver therapeutic and diagnostic payloads into solid tumors. While the dominant role of this class of endothelial cells for nanoparticle transport and tumor delivery is established in animal models, the translational potential in human cells needs exploration. Using primary human breast cancer as a model, the differential interactions of normal and tumor‐associated endothelial cells with clinically relevant nanomedicine formulations are explored and quantified. Primary human breast cancer‐associated endothelial cells exhibit up to ≈2 times higher nanoparticle uptake than normal human mammary microvascular endothelial cells. Super‐resolution imaging studies reveal a significantly higher intracellular vesicle number for tumor‐associated endothelial cells, indicating a substantial increase in cellular transport activities. RNA sequencing and gene expression analysis indicate the upregulation of transport‐related genes, especially motor protein genes, in tumor‐associated endothelial cells. Collectively, the results demonstrate that primary human breast cancer‐associated endothelial cells exhibit enhanced interactions with nanomedicines, suggesting a potentially significant role for these cells in nanoparticle tumor delivery in human patients. Engineering nanoparticles that leverage the translational potential of tumor‐associated endothelial cell‐mediated transport into human solid tumors may lead to the development of safer and more effective clinical cancer nanomedicines. 
    more » « less
  5. Abstract The human neurovascular system is a complex network of blood vessels and brain cells that is essential to the proper functioning of the brain. Researchers have become increasingly interested in the system for developing drugs to treat neuroinflammation. Currently, creating neurovascular models begins with animal models, followed by testing on humans in clinical trials. However, the high number of medication failures that pass through animal testing indicates that animal models do not always reflect the outcome of human clinical trials. To overcome the challenges of the issues with animal models, a neurovascular‐unit‐on‐a‐chip system is developed to accurately replicate the in vivo human neurovascular microenvironment. By replicating the human neurovascular unit, a more accurate representation of human physiology can be achieved compared to animal models. The ability to detect proinflammatory cytokines in situ and monitor physiological changes can provide an invaluable tool for evaluating the efficacy and safety of drugs. Using nanosized graphene oxide for in situ detection of inflammatory responses is an innovative approach that can advance the field of neuroinflammation research. Overall, the developed neuroinflammation‐on‐a‐chip system has the potential to provide a more efficient and effective method for developing drugs for treating neurodegenerative diseases and other central nervous system diseases. 
    more » « less