skip to main content


Title: Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars
Abstract Drought decreases water transport capacity of leaves and limits gas exchange, which involves reduced leaf leaf hydraulic conductance (Kleaf) in both the xylem and outside-xylem pathways. Some literature suggests that grapevines are hyper-susceptible to drought-induced xylem embolism. We combined Kleaf and gas exchange measurements, micro-computed tomography of intact leaves, and spatially explicit modeling of the outside-xylem pathways to evaluate the role of vein embolism and Kleaf in the responses of two different grapevine cultivars to drought. Cabernet Sauvignon and Chardonnay exhibited similar vulnerabilities of Kleaf and gs to dehydration, decreasing substantially prior to leaf xylem embolism. Kleaf and gs decreased by 80% for both cultivars by Ψ leaf approximately –0.7 MPa and –1.2 MPa, respectively, while leaf xylem embolism initiated around Ψ leaf = –1.25 MPa in the midribs and little to no embolism was detected in minor veins even under severe dehydration for both cultivars. Modeling results indicated that reduced membrane permeability associated with a Casparian-like band in the leaf vein bundle sheath would explain declines in Kleaf of both cultivars. We conclude that during moderate water stress, changes in the outside-xylem pathways, rather than xylem embolism, are responsible for reduced Kleaf and gs. Understanding this mechanism could help to ensure adequate carbon capture and crop performance under drought.  more » « less
Award ID(s):
1943583
NSF-PAR ID:
10227894
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Lawson, Tracy
Date Published:
Journal Name:
Journal of Experimental Botany
Volume:
71
Issue:
22
ISSN:
0022-0957
Page Range / eLocation ID:
7286 to 7300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    A surge of papers have reported low leaf vulnerability to xylem embolism during drought. Here, we focus on the less studied, and more sensitive, outside‐xylem leaf hydraulic responses to multiple internal and external conditions. Studies of 34 species have resolved substantial vulnerability to dehydration of the outside‐xylem pathways, and studies of leaf hydraulic responses to light also implicate dynamic outside‐xylem responses. Detailed experiments suggest these dynamic responses arise at least in part from strong control of radial water movement across the vein bundle sheath. While leaf xylem vulnerability may influence leaf and plant survival during extreme drought, outside‐xylem dynamic responses are important for the control and resilience of water transport and leaf water status for gas exchange and growth.

     
    more » « less
  2. Abstract

    Stomata, the microvalves on leaf surfaces, exert major influences across scales, from plant growth and productivity to global carbon and water cycling. Stomatal opening enables leaf photosynthesis, and plant growth and water use, whereas plant survival of drought depends on stomatal closure. Here we report that stomatal function is constrained by a safety-efficiency trade-off, such that species with greater stomatal conductance under high water availability (gmax) show greater sensitivity to closure during leaf dehydration, i.e., a higher leaf water potential at which stomatal conductance is reduced by 50% (Ψgs50). Thegmax- Ψgs50trade-off and its mechanistic basis is supported by experiments on leaves of California woody species, and in analyses of previous studies of the responses of diverse flowering plant species around the world. Linking the two fundamental key roles of stomata—the enabling of gas exchange, and the first defense against drought—this trade-off constrains the rates of water use and the drought sensitivity of leaves, with potential impacts on ecosystems.

     
    more » « less
  3. Summary

    Given increasing water deficits across numerous ecosystems world‐wide, it is urgent to understand the sequence of failure of leaf function during dehydration.

    We assessed dehydration‐induced losses of rehydration capacity and maximum quantum yield of the photosystemII(Fv/Fm) in the leaves of 10 diverse angiosperm species, and tested when these occurred relative to turgor loss, declines of stomatal conductancegs, and hydraulic conductanceKleaf, including xylem and outside xylem pathways for the same study plants. We resolved the sequences of relative water content and leaf water potential Ψleafthresholds of functional impairment.

    On average, losses of leaf rehydration capacity occurred at dehydration beyond 50% declines ofgs,Kleafand turgor loss point. Losses ofFv/Fmoccurred after much stronger dehydration and were not recovered with leaf rehydration. Across species, tissue dehydration thresholds were intercorrelated, suggesting trait co‐selection. Thresholds for each type of functional decline were much less variable across species in terms of relative water content than Ψleaf.

    The stomatal and leaf hydraulic systems show early functional declines before cell integrity is lost. Substantial damage to the photochemical apparatus occurs at extreme dehydration, after complete stomatal closure, and seems to be irreversible.

     
    more » « less
  4. Links between the carbon and water economies of plants are coupled by combining the biochemical demand for atmospheric CO2 with gas transfer through stomates, liquid water transport in the soil-xylem hydraulic system and sucrose export in the phloem. We formulated a model to predict stomatal conductance (gs), consistent with the maximum energy circulation concept of Lotka and Odum, by maximizing the sucrose flux out of photosynthesizing leaves. The proposed modeling approach recovers all prior results derived from stomatal optimization theories and profit-maximization arguments for the xylem hydraulic system aimed at predicting gs. The novel features of this approach are its ability to 1) predict the price of losing water in carbon units using xylem and phloem properties (i.e., the marginal water use efficiency) and 2) explain why water molecules become more expensive to exchange for CO2 molecules when soil moisture becomes limiting or when plants acclimate to new elevated atmospheric CO2 concentration. On short time-scales (sub-daily), predicted gs under many environmental stimuli were consistent with measurements reported in the literature, including a general sensitivity of gs to vapor pressure deficit and leaf water potential. During progressive droughts, differences in the coordination among the leaf, xylem, and phloem functioning determine the isohydric-to-anisohydric behavior among plants. 
    more » « less
  5. Summary

    The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown.

    We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves.

    Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration.

    We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants.

     
    more » « less