skip to main content


Title: Using Monochlorobimane to Visualize Glutathione Utilization in the Developing Zebrafish ( Danio rerio ) Embryo
Abstract

Glutathione (GSH) plays fundamental roles in cellular redox buffering and is a common detoxification pathway for excretion of xenobiotics. This is especially crucial during vertebrate embryogenesis, when an organism is at one of its most vulnerable life stages. Importantly, GSH content and redox potential can dictate cell fate decisions, which can have profound consequences if altered by early life xenobiotic exposures. Owing to technical limitations, the best available method to detect and quantify changes in GSH has been high‐pressure liquid chromatography, a terminal method that prevents suborganism‐level resolution of these changes in developing embryos. Here, we describe a protocol that leverages the transparent nature of zebrafish embryos and the compatibility of monochlorobimane with the zebrafish GSH‐S‐transferase enzymes, to allow for the visualization of changes in GSH via S‐glutathionylation in a live, developing embryo. This method can find broad application in developmental biology and toxicology. © 2021 Wiley Periodicals LLC.

This article was corrected on 19 July 2022. See the end of the full text for details.

 
more » « less
NSF-PAR ID:
10228113
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Current Protocols
Volume:
1
Issue:
2
ISSN:
2691-1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We evaluated the elasticity of live tissues of zebrafish embryos using label‐free optical elastography. We employed a pair of custom‐built elastic microcantilevers to gently compress a zebrafish embryo and used optical‐tracking analysis to obtain the induced internal strain. We then built a finite element method (FEM) model and matched the strain with the optical analysis. The elastic moduli were found by minimizing the root‐mean‐square errors between the optical and FEM analyses. We evaluated the average elastic moduli of a developing somite, the overlying ectoderm, and the underlying yolk of seven zebrafish embryos during the early somitogenesis stages. The estimation results showed that the average elastic modulus of the somite increased from 150 to 700 Pa between 4‐ and 8‐somite stages, while those of the ectoderm and the yolk stayed between 100 and 200 Pa, and they did not show significant changes. The result matches well with the developmental process of somitogenesis reported in the literature. This is among the first attempts to quantify spatially‐resolved elasticity of embryonic tissues from optical elastography.

     
    more » « less
  2. ABSTRACT

    The zebrafish is a widely used model organism for biomedical research due to its ease of maintenance, external fertilization of embryos, rapid embryonic development, and availability of established genetic tools. One notable advantage of using zebrafish is the transparency of the embryos, which enables high-resolution imaging of specific cells, tissues, and structures through the use of transgenic and knock-in lines. However, as the embryo develops, multiple layers of tissue wrap around the lipid-enriched yolk, which can create a challenge to image tissues located deep within the embryo. While various methods are available, such as two-photon imaging, cryosectioning, vibratome sectioning, and micro-surgery, each of these has limitations. In this study, we present a novel deyolking method that allows for high-quality imaging of tissues that are obscured by other tissues and the yolk. Embryos are lightly fixed in 1% PFA to remove the yolk without damaging embryonic tissues and are then refixed in 4% PFA and mounted on custom-made bridged slides. This method offers a simple way to prepare imaging samples that can be subjected to further preparation, such as immunostaining. Furthermore, the bridged slides described in this study can be used for imaging tissue and organ preparations from various model organisms.

     
    more » « less
  3. Abstract

    Although the microcrustaceanDaphniais becoming an organism of choice for proteomic studies, protein expression across its life cycle have not been fully characterized. Proteomes of adult females, juveniles, asexually produced embryos, and the ephippia‐resting stages containing sexually produced diapausing freezing‐ and desiccation‐resistant embryos are analyzed. Overall, proteins with known molecular functions are more likely to be detected than proteins with no detectable orthology. Similarly, proteins with stronger gene model support in two independent genome assemblies can be detected, than those without such support. This suggests that the proteomics pipeline can be applied to verify hypothesized proteins, even given questionable reference gene models. In particular, upregulation of vitellogenins and downregulation of actins and myosins in embryos of both types, relative to juveniles and adults, and overrepresentation of cell‐cycle related proteins in the developing embryos, relative to diapausing embryos and adults, are observed. Upregulation of small heat‐shock proteins and peroxidases, as well as overrepresentation of stress‐response proteins in the ephippium relative to the asexually produced non‐diapausing embryos, is found. The ephippium also shows upregulation of three trehalose‐synthesis proteins and downregulation of a trehalose hydrolase, consistent with the role of trehalose in protection against freezing and desiccation.

     
    more » « less
  4. Abstract

    Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high‐resolution real‐time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events—specification, delamination, and migration—discussing what is known about zebrafish NCC development and how it differs from NCC development in non‐teleost species, as well as highlighting current gaps in knowledge.

     
    more » « less
  5. Abstract

    Redox reactions play a central role in the metabolism of an organism. It is vital to maintain redox homeostasis in response to the fluctuation of redox shift in various biological contexts. NADPH-dependent reducing capacity is one of the key factors contributing to the redox homeostasis. To understand the redox capacity and its impact on mosquito fecundity and susceptibility to insecticides inAnopheles gambiae, we examined the dynamics of elevated oxidative state via induction by paraquat (PQ) and the inhibition of NADPH regeneration by 6-aminonicotinamide (6AN). In naïve conditions, inherent oxidative capacity varies between individuals, as measured by GSSG/GSH ratio. The high GSSG/GSH ratio was negatively correlated with fecundity. Both PQ and 6AN feeding increased GSSG/GSH ratio and elevated protein carbonylation, a marker of oxidative damage. Both pro-oxidants lowered egg production. Co-feeding the pro-oxidants with antioxidant lycopene attenuated the adverse effects on fecundity, implying that oxidative stress was the cause of this phenotype. Pre-feeding with 6AN increased insecticide susceptibility in DDT resistant mosquitoes. These results indicate that oxidative state is delicate in mosquitoes, manipulation of NADPH pool may adversely affect fecundity and insecticide detoxification capacity. This knowledge can be exploited to develop novel vector control strategies targeting fecundity and insecticide resistance.

     
    more » « less