- Award ID(s):
- 1658174
- NSF-PAR ID:
- 10228172
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The Gulf of Mexico is a very productive and economically important system where riverine runoff acts as a linkage between the continental shelf and the open ocean, providing nutrients in addition to freshwater. This work investigates the three-dimensional transport and pathway structure of this river runoff offshore the continental shelf using ensembles of numerical simulations with different configurations regarding grid resolution (mesoscale resolving and submesoscale permitting) and river setup using suites of 5-months long integrations covering nearly 3 years. The riverine forcing is applied only at the surface over an area around the river mouth, a strategy often adopted in numerical studies, or as a meridional flux with a vertical extension. The simulated flow captures the southward offshore transport of river runoff driven by its interaction with the largest mesoscale circulations in the basin, the Loop Current and Loop Current eddies. This pathway is strong and well-document during summer but also active and relevant in winter, despite a less obvious surface signature. The most intense transport occurs primarily at the peripheries of the Loop Current and the detached eddies, and the freshwater is subducted as deep as 600 m around the mesoscale anticyclonic eddies. Submesoscale motions strengthen slightly the spread of freshwater plumes in summer but their contribution is negligible, if not negative, in winter. Differences in the freshwater distribution and transport volume among runs are small and generally less than 10% among ensembles, with overall slightly higher volume of freshwater transported off-shore and at depth in submesoscale permitting runs that include a velocity flux in their riverine input representation.more » « less
-
Abstract Global warming may modify submesoscale activity in the ocean through changes in the mixed layer depth (MLD) and lateral buoyancy gradients. As a case study we consider a region in the NE Atlantic under present and future climate conditions, using a time‐slice method and global and nested regional ocean models. The high resolution regional model reproduces the strong seasonal cycle in submesoscale activity observed under present‐day conditions. Focusing on the well‐resolved winter months, in the future, with a reduction in the MLD, there is a substantial reduction in submesoscale activity, an associated decrease in kinetic energy (KE) at the mesoscale, and the vertical buoyancy flux induced by submesoscale activity is reduced by a factor of 2. When submesoscale activity is suppressed, by increasing the parameterized lateral mixing in the model, the climate change induces a larger reduction in winter MLDs while there is less of a change in KE at the mesoscale. A scaling for the vertical buoyancy flux proposed by (Fox‐Kemper et al., 2008; doi:10.1175/2007JPO3792.1) based on the properties of mixed layer instability (MLI), is found to capture much of the seasonal and future changes to the flux in terms of regional averages as well as the spatial structure, although it over predicts the reduction in the flux in the winter months. The vertical buoyancy flux when the mixed layer is relatively shallow is significantly greater than that given by the scaling based on MLI, suggesting during these times other processes (besides MLI) may dominate submesoscale buoyancy fluxes.
-
Abstract Near the ocean surface, river plumes influence stratification, buoyancy and transport of tracers, nutrients and pollutants. The extent to which river plumes influence the overall circulation, however, is generally poorly constrained. This work focuses on the South China Sea (SCS) and quantifies the dynamical impacts of the Mekong River plume, which is bound to significantly change in strength and seasonality in the next 20 years if the construction of over hundred dams moves ahead as planned. The dynamic impact of the freshwater fluxes on the SCS circulation are quantified by comparing submesoscale permitting and mesoscale resolving simulations with and without riverine input between 2011 and 2016. In the summer and early fall, when the Mekong discharge is at its peak, the greater stratification causes a residual mesoscale circulation through enhanced baroclinic instability. The residual circulation is shaped as an eddy train of positive and negative vorticity. Submesoscale fronts are responsible for transporting the freshwater offshore, shifting eastward the development of the residual mesoscale circulation, and further strengthening the residual eddy train in the submesoscale permitting case. Overall, the northward transport near the surface is intensified in the presence of riverine input. The significance of the mesoscale‐induced and submesoscale‐induced transport associated with the river plume is especially important in the second half of the summer monsoon season, when primary productivity has a secondary maximum. Circulation changes, and therefore productivity changes, should be anticipated if human activities modify the intensity and seasonality of the Mekong River plume.
-
In the California Current, subduction by mesoscale eddies removes nutrients from the coastal surface layer, counteracting upwelling and quenching productivity. Submesoscale eddies are also ubiquitous in the California Current, but their biogeochemical role has not been quantified yet in the region. Here, we present results from a physical‐biogeochemical model of the California Current run at a resolution of 1 km, sufficient to represent submesoscale dynamics. By comparing it with a coarser simulation run at 4 km resolution, we demonstrate the importance of submesoscale currents for the seasonal cycles of nutrients and organic matter and highlight the existence of different regimes along a cross‐shore gradient. In the productive coastal region, submesoscale currents intensify quenching and reduce productivity, further counteracting wind‐driven upwelling. In the offshore oligotrophic region, submesoscale currents enhance the upward transport of nutrients, fueling a dramatic increase in new production. These effects are modulated by seasonality, strengthening near the coast during upwelling and offshore in wintertime. The intensification of the transport by submesoscale eddies drives an adjustment of the planktonic ecosystem, with a reduction of plankton biomass, productivity, and size near the coast and an increase offshore. In contrast, organic matter export by sinking particles and subduction of detritus and living cells are enhanced nearly everywhere. Similar processes are likely important in other regions characterized by seasonal upwelling, for example, other eastern boundary upwelling systems.
-
Abstract Submesoscale dynamics are typically intensified at boundaries and assumed to weaken below the mixed layer in the open ocean. Here, we assess both the seasonality and the vertical distribution of submesoscale motions in an open-ocean region of the northeast Atlantic. Second-order structure functions, or variance in properties separated by distance, are calculated from submesoscale-resolving ocean glider and mooring observations, as well as a 1/48° numerical ocean model. This dataset combines a temporal coverage that extends through a full seasonal cycle, a horizontal resolution that captures spatial scales as small as 1 km, and vertical sampling that provides near-continuous coverage over the upper 1000 m. While kinetic and potential energies undergo a seasonal cycle, being largest during the winter, structure function slopes, influenced by dynamical characteristics, do not exhibit a strong seasonality. Furthermore, structure function slopes show weak vertical variations; there is not a strong change in properties across the base of the mixed layer. Additionally, we compare the observations to output from a high-resolution numerical model. The model does not represent variability associated with superinertial motions and does not capture an observed reduction in submesoscale kinetic energy that occurs throughout the water column in spring. Overall, these results suggest that the transfer of mixed layer submesoscale variability down to depths below the traditionally defined mixed layer is important throughout the weakly stratified subpolar mode waters.