skip to main content


Title: bric à brac controls sex pheromone choice by male European corn borer moths
Abstract

The sex pheromone system of ~160,000 moth species acts as a powerful form of assortative mating whereby females attract conspecific males with a species-specific blend of volatile compounds. Understanding how female pheromone production and male preference coevolve to produce this diversity requires knowledge of the genes underlying change in both traits. In the European corn borer moth, pheromone blend variation is controlled by two alleles of an autosomal fatty-acyl reductase gene expressed in the female pheromone gland (pgFAR). Here we show that asymmetric male preference is controlled bycis-acting variation in a sex-linked transcription factor expressed in the developing male antenna,bric à brac(bab). A genome-wide association study of preference using pheromone-trapped males implicates variation in the 293 kbbabintron 1, rather than the coding sequence. Linkage disequilibrium betweenbabintron 1 andpgFARfurther validatesbabas the preference locus, and demonstrates that the two genes interact to contribute to assortative mating. Thus, lack of physical linkage is not a constraint for coevolutionary divergence of female pheromone production and male behavioral response genes, in contrast to what is often predicted by evolutionary theory.

 
more » « less
NSF-PAR ID:
10228264
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Patterns of mating for the European corn borer (Ostrinia nubilalis) moth depend in part on variation in sex‐pheromone blend. The ratio of (E)‐11‐ and (Z)‐11‐tetradecenyl acetate (E11‐ and Z11‐14:OAc) in the pheromone blend that females produce and males respond to differs between strains ofO. nubilalis. Populations also vary in female oviposition preference for and larval performance on maize (C4) and nonmaize (C3) host plants. The relative contributions of sexual and ecological trait variation to the genetic structure ofO. nubilalisremains unknown. Host‐plant use (13C/14C ratios) and genetic differentiation were estimated among sympatric E and Z pheromone strainO. nubilalismales collected in sex‐pheromone baited traps at 12 locations in Pennsylvania and New York between 2007 and 2010. Among genotypes at 65 single nucleotide polymorphism marker loci, variance at a position in the pheromone gland fatty acyl‐reductase (pgfar) gene at the locus responsible for determining female pheromone ratio (Pher) explained 64% of the total genetic differentiation between males attracted to different pheromones (male response,Resp), providing evidence of sexual inter‐selection at these unlinked loci. Principal coordinate, Bayesian clustering, and distance‐based redundancy analysis (dbRDA) demonstrate that host plant history or geography does not significantly contribute to population variation or differentiation among males. In contrast, these analyses indicate that pheromone response andpgfar‐defined strain contribute significantly to population genetic differentiation. This study suggests that behavioural divergence probably plays a larger role in driving genetic variation compared to host plant‐defined ecological adaptation.

     
    more » « less
  2. Abstract BACKGROUND

    Geographic variation in male response to sex pheromone lures has been studied in the field in a number of moth species. However, only a few studies have investigated geographic variation in female calling and sex pheromone under field conditions. For an effective field implementation of sex pheromone lures, it is essential to know the local sex pheromone blend and local timing of sexual communication. We investigated the level and extent of geographic variation in the sexual communication of the important agricultural pestHelicoverpa armigera(Lepidoptera, Noctuidae) in three continents.

    RESULTS

    We found there is no genetic variation in the calling behavior ofH. armigera. In the female sex pheromone, we found more between‐population variation than within‐population variation. In male response experiments, we found geographic variation as well. Strikingly, when adding the antagonistic compound Z11‐16:OAc to the pheromone blend ofH. armigera, significantly fewer males were caught in Australia and China, but not in Spain. This variation is likely not only due to local environmental conditions, such as photoperiod and temperature, but also to the presence of other closely related species with which communication interference may occur.

    Conclusion

    Finding geographic variation in both the female sexual signal and the male response in this pest calls for region‐specific pheromone lures. Our study shows that the analysis of geographic variation in moth female sex pheromones as well as male responses is important for effectively monitoring pest species that occur around the globe. © 2020 The Authors.Pest Management Sciencepublished by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

     
    more » « less
  3. Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis- regulatory variation of bric a brac ( bab ) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation. 
    more » « less
  4. null (Ed.)
    Synopsis Sound production in tiger moths (Erebidae: Arctiinae) plays a role in natural selection. Some species use tymbal sounds as jamming signals avoiding bat predation. High duty cycle signals have the greatest efficacy in this regard. Tiger moth sounds can also be used for intraspecific communication. Little is known about the role of sound in the mating behavior of jamming species or the signal preferences underlying mate choice. We recorded sound production during the courtship of two high duty cycle arctiines, Bertholdia trigona and Carales arizonensis. We characterized variation in their acoustic signals, measured female preference for male signals that vary in duty cycle, and performed female choice experiments to determine the effect of male duty cycle on the acceptance of male mates. Although both species produced sound during courtship, the role of acoustic communication appears different between the species. Bertholdia trigona was acoustically active in all intraspecific interactions. Females preferred and ultimately mated with males that produced higher duty cycles. Muted males were never chosen. In C. arizonensis however, sound emissions were limited during courtship and in some successful matings no sound was detected. Muted and clicking males were equally successful in female mate-choice experiments, indicating that acoustic communication is not essential for mating in C. arizonensis. Our results suggest that in B. trigona natural and sexual selection may work in parallel, to favor higher duty cycle clicking. 
    more » « less
  5. Abstract

    Sexually dimorphic behaviour is pervasive across animals, with males and females exhibiting different mate selection, parental care, foraging, dispersal, and territorial strategies. However, the genetic underpinnings of sexually dimorphic behaviours are poorly understood. Here we investigate gene networks and expression patterns associated with sexually dimorphic imprinting‐like learning in the butterflyBicyclus anynana. In this species, both males and females learn visual preferences, but learn preferences for different traits and use different signals as salient, unconditioned cues. To identify genes and gene networks associated with this behaviour, we examined gene expression profiles of the brains and eyes of male and female butterflies immediately post training and compared them to the same tissues of naïve individuals. We found more differentially expressed genes and a greater number of associated gene networks in the eyes, indicating a role of the peripheral nervous system in visual imprinting‐like learning. Females had higher chemoreceptor expression levels than males, supporting the hypothesized sexual dimorphic use of chemical cues during the learning process. In addition, genes that influenceB. anynanawing patterns (sexual ornaments), such asinvected,spalt, andapterous, were also differentially expressed in the brain and eye, suggesting that these genes may influence both sexual ornaments and the preferences for these ornaments. Our results indicate dynamic and sex‐specific responses to social scenario in both the peripheral and central nervous systems and highlight the potential role of wing patterning genes in mate preference and learning across the Lepidoptera.

     
    more » « less