skip to main content


Title: Programmed Proteolysis of Chemotaxis Proteins in Sinorhizobium meliloti : Features in the C-Terminal Region Control McpU Degradation
ABSTRACT Chemotaxis and motility are important traits that support bacterial survival in various ecological niches and in pathogenic and symbiotic host interaction. Chemotactic stimuli are sensed by chemoreceptors or m ethyl-accepting c hemotaxis p roteins (MCPs), which direct the swimming behavior of the bacterial cell. In this study, we present evidence that the cellular abundance of chemoreceptors in the plant symbiont Sinorhizobium meliloti can be altered by the addition of several to as few as one amino acid residues and by including common epitope tags such as 3×FLAG and 6×His at their C termini. To further dissect this phenomenon and its underlying molecular mechanism, we focused on a detailed analysis of the amino acid sensor McpU. Controlled proteolysis is important for the maintenance of an appropriate stoichiometry of chemoreceptors and between chemoreceptors and chemotactic signaling proteins, which is essential for an optimal chemotactic response. We hypothesized that enhanced stability is due to interference with protease binding, thus affecting proteolytic efficacy. Location of the protease recognition site was defined through McpU stability measurements in a series of deletion and amino acid substitution mutants. Deletions in the putative protease recognition site had similar effects on McpU abundance, as did extensions at the C terminus. Our results provide evidence that the programmed proteolysis of chemotaxis proteins in S. meliloti is cell cycle regulated. This posttranslational control, together with regulatory pathways on the transcriptional level, limits the chemotaxis machinery to the early exponential growth phase. Our study identified parallels to cell cycle-dependent processes during asymmetric cell division in Caulobacter crescentus . IMPORTANCE The symbiotic bacterium Sinorhizobium meliloti contributes greatly to growth of the agriculturally valuable host plant alfalfa by fixing atmospheric nitrogen. Chemotaxis of S. meliloti cells toward alfalfa roots mediates this symbiosis. The present study establishes programmed proteolysis as a factor in the maintenance of the S. meliloti chemotaxis system. Knowledge about cell cycle-dependent, targeted, and selective proteolysis in S. meliloti is important to understand the molecular mechanisms of maintaining a suitable chemotaxis response. While the role of regulated protein turnover in the cell cycle progression of Caulobacter crescentus is well understood, these pathways are just beginning to be characterized in S. meliloti . In addition, our study should alert about the cautionary use of epitope tags for protein quantification.  more » « less
Award ID(s):
1817652
NSF-PAR ID:
10228270
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Stock, Ann M.
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
202
Issue:
17
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Becker, Anke (Ed.)
    ABSTRACT Chemoreceptors enable the legume symbiont Sinorhizobium meliloti to detect and respond to specific chemicals released from their host plant alfalfa, which allows the establishment of a nitrogen-fixing symbiosis. The periplasmic region (PR) of transmembrane chemoreceptors act as the sensory input module for chemotaxis systems via binding of specific ligands, either directly or indirectly. S. meliloti has six transmembrane and two cytosolic chemoreceptors. However, the function of only three of the transmembrane receptors have been characterized so far, with McpU, McpV, and McpX serving as general amino acid, short-chain carboxylate, and quaternary ammonium compound sensors, respectively. In the present study, we analyzed the S. meliloti chemoreceptor McpT. High-throughput differential scanning fluorimetry assays, using Biolog phenotype microarray plates, identified 15 potential ligands for McpT PR , with the majority classified as mono-, di-, and tricarboxylates. S. meliloti exhibited positive chemotaxis toward seven selected carboxylates, namely, α-ketobutyrate, citrate, glyoxylate, malate, malonate, oxalate, and succinate. These carboxylates were detected in seed exudates of the alfalfa host. Deletion of mcpT resulted in a significant decrease of chemotaxis to all carboxylates except for citrate. Isothermal titration calorimetry revealed that McpT PR bound preferentially to the monocarboxylate glyoxylate and with lower affinity to the dicarboxylates malate, malonate, and oxalate. However, no direct binding was detected for the remaining three carboxylates that elicited an McpT-dependent chemotaxis response. Taken together, these results demonstrate that McpT is a broad-range carboxylate chemoreceptor that mediates chemotactic response via direct ligand binding and an indirect mechanism that needs to be identified. IMPORTANCE Nitrate pollution is one of the most widespread and challenging environmental problems that is mainly caused by the agricultural overapplication of nitrogen fertilizers. Biological nitrogen fixation by the endosymbiont Sinorhizobium meliloti enhances the growth of its host Medicago sativa (alfalfa), which also efficiently supplies the soil with nitrogen. Establishment of the S. meliloti - alfalfa symbiosis relies on the early exchange and recognition of chemical signals. The present study contributes to the disclosure of this complex molecular dialogue by investigating the underlying mechanisms of carboxylate sensing in S. meliloti . Understanding individual steps that govern the S. meliloti -alfalfa molecular cross talk helps in the development of efficient, commercial bacterial inoculants that promote the growth of alfalfa, which is the most cultivated forage legume in the world, and improves soil fertility. 
    more » « less
  2. ABSTRACT Sinorhizobium meliloti is a soil-dwelling endosymbiont of alfalfa that has eight chemoreceptors to sense environmental stimuli during its free-living state. The functions of two receptors have been characterized, with McpU and McpX serving as general amino acid and quaternary ammonium compound sensors, respectively. Both receptors use a dual Cache ( ca lcium channels and che motaxis receptors) domain for ligand binding. We identified that the ligand-binding periplasmic region (PR) of McpV contains a single Cache domain. Homology modeling revealed that McpV PR is structurally similar to a sensor domain of a chemoreceptor with unknown function from Anaeromyxobacter dehalogenans , which crystallized with acetate in its binding pocket. We therefore assayed McpV for carboxylate binding and S. meliloti for carboxylate sensing. Differential scanning fluorimetry identified 10 potential ligands for McpV PR . Nine of these are monocarboxylates with chain lengths between two and four carbons. We selected seven compounds for capillary assay analysis, which established positive chemotaxis of the S. meliloti wild type, with concentrations of peak attraction at 1 mM for acetate, propionate, pyruvate, and glycolate, and at 100 mM for formate and acetoacetate. Deletion of mcpV or mutation of residues essential for ligand coordination abolished positive chemotaxis to carboxylates. Using microcalorimetry, we determined that dissociation constants of the seven ligands with McpV PR were in the micromolar range. An McpV PR variant with a mutation in the ligand coordination site displayed no binding to isobutyrate or propionate. Of all the carboxylates tested as attractants, only glycolate was detected in alfalfa seed exudates. This work examines the relevance of carboxylates and their sensor to the rhizobium-legume interaction. IMPORTANCE Legumes share a unique association with certain soil-dwelling bacteria known broadly as rhizobia. Through concerted interorganismal communication, a legume allows intracellular infection by its cognate rhizobial species. The plant then forms an organ, the root nodule, dedicated to housing and supplying fixed carbon and nutrients to the bacteria. In return, the engulfed rhizobia, differentiated into bacteroids, fix atmospheric N 2 into ammonium for the plant host. This interplay is of great benefit to the cultivation of legumes, such as alfalfa and soybeans, and is initiated by chemotaxis to the host plant. This study on carboxylate chemotaxis contributes to the understanding of rhizobial survival and competition in the rhizosphere and aids the development of commercial inoculants. 
    more » « less
  3. Abstract

    Chemotaxis is a fundamental process whereby bacteria seek out nutrient sources and avoid harmful chemicals. For the symbiotic soil bacteriumSinorhizobium meliloti, the chemotaxis system also plays an essential role in the interaction with its legume host. The chemotactic signaling cascade is initiated through interactions of an attractant or repellent compound with chemoreceptors or methyl‐accepting chemotaxis proteins (MCPs).S. melilotipossesses eight chemoreceptors to mediate chemotaxis. Six of these receptors are transmembrane proteins with periplasmic ligand‐binding domains (LBDs). The specific functions of McpW and McpZ are still unknown. Here, we report the crystal structure of the periplasmic domain of McpZ (McpZPD) at 2.7 Å resolution. McpZPD assumes a novel fold consisting of three concatenated four‐helix bundle modules. Through phylogenetic analyses, we discovered that this helical tri‐modular domain fold arose within the Rhizobiaceae family and is still evolving rapidly. The structure, offering a rare view of a ligand‐free dimeric MCP‐LBD, reveals a novel dimerization interface. Molecular dynamics calculations suggest ligand binding will induce conformational changes that result in large horizontal helix movements within the membrane‐proximal domains of the McpZPD dimer that are accompanied by a 5 Å vertical shift of the terminal helix toward the inner cell membrane. These results suggest a mechanism of transmembrane signaling for this family of MCPs that entails both piston‐type and scissoring movements. The predicted movements terminate in a conformation that closely mirrors those observed in related ligand‐bound MCP‐LBDs.

     
    more » « less
  4. Csikász-Nagy, Attila (Ed.)
    The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asymmetric cell division driven by precise interactions and regulations of proteins, which makes Caulobacter an ideal model organism for investigating bacterial cell development and differentiation. The abundance of molecular data accumulated on Caulobacter motivates system biologists to analyze the complex regulatory network of cell cycle via quantitative modeling. In this paper, We propose a comprehensive model to accurately characterize the underlying mechanisms of cell cycle regulation based on the study of: a) chromosome replication and methylation; b) interactive pathways of five master regulatory proteins including DnaA, GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding mRNAs; c) cell cycle-dependent proteolysis of CtrA through hierarchical protease complexes. The temporal dynamics of our simulation results are able to closely replicate an extensive set of experimental observations and capture the main phenotype of seven mutant strains of Caulobacter crescentus . Collectively, the proposed model can be used to predict phenotypes of other mutant cases, especially for nonviable strains which are hard to cultivate and observe. Moreover, the module of cyclic proteolysis is an efficient tool to study the metabolism of proteins with similar mechanisms. 
    more » « less
  5. Chemotaxis systems enable microbes to sense their immediate environment, moving towards beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti , a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis . To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to varying degrees. The ten-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that only consist of CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti , instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti , which utilizes a phosphate-sink mechanism based on CheA retro-phosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis . Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased when compared to CheA, indicative of variations in the adaptation system of S. meliloti . Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems. IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in E. coli and B. subtilis . In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism. 
    more » « less