skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Explaining Text Matching on Neural Natural Language Inference
Natural language inference (NLI) is the task of detecting the existence of entailment or contradiction in a given sentence pair. Although NLI techniques could help numerous information retrieval tasks, most solutions for NLI are neural approaches whose lack of interpretability prohibits both straightforward integration and diagnosis for further improvement. We target the task of generating token-level explanations for NLI from a neural model. Many existing approaches for token-level explanation are either computationally costly or require additional annotations for training. In this article, we first introduce a novel method for training an explanation generator that does not require additional human labels. Instead, the explanation generator is trained with the objective of predicting how the model’s classification output will change when parts of the inputs are modified. Second, we propose to build an explanation generator in a multi-task learning setting along with the original NLI task so the explanation generator can utilize the model’s internal behavior. The experiment results suggest that the proposed explanation generator outperforms numerous strong baselines. In addition, our method does not require excessive additional computation at prediction time, which renders it an order of magnitude faster than the best-performing baseline.  more » « less
Award ID(s):
1813662
PAR ID:
10228377
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Information Systems
Volume:
38
Issue:
4
ISSN:
1046-8188
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work introduces a natural language inference (NLI) dataset that focuses on the validity of statements in legal wills. This dataset is unique because: (a) each entailment decision requires three inputs: the statement from the will, the law, and the conditions that hold at the time of the testator’s death; and (b) the included texts are longer than the ones in current NLI datasets. We trained eight neural NLI models in this dataset. All the models achieve more than 80% macro F1 and accuracy, which indicates that neural approaches can handle this task reasonably well. However, group accuracy, a stricter evaluation measure that is calculated with a group of positive and negative examples generated from the same statement as a unit, is in mid 80s at best, which suggests that the models’ understanding of the task remains superficial. Further ablative analyses and explanation experiments indicate that all three text segments are used for prediction, but some decisions rely on semantically irrelevant tokens. This indicates that overfitting on these longer texts likely happens, and that additional research is required for this task to be solved. 
    more » « less
  2. Uniform Meaning Representation (UMR) is the next phase of semantic formalism following Abstract Meaning Representation (AMR), with added focus on inter-sentential relations allowing the representational scope of UMR to cover a full document. This, in turn, greatly increases the complexity of its parsing task with the additional requirement of capturing document-level linguistic phenomena such as coreference, modal and temporal dependencies. In order to establish a strong baseline despite the small size of recently released UMR v1.0 corpus, we introduce a pipeline model that does not require any training. At the core of our method is a two-track strategy of obtaining UMR’s sentence and document graphs separately, with the document-level triples being compiled at the token level and the sentence graph being converted from AMR graphs. By leveraging alignment between AMR and its sentence, we are able to generate the first automatic English UMR parses. 
    more » « less
  3. We propose a method to teach multiple large language models (LLM) to collaborate by interleaving their generations at the token level. We model the decision of which LLM generates the next token as a latent variable. By optimizing the marginal likelihood of a training set under our latent variable model, the base LLM automatically learns when to generate itself and when to call on one of the “assistant” language models to generate, all without direct supervision. Token-level collaboration during decoding allows for a fusion of each model’s expertise in a manner tailored to the specific task at hand. Our collaborative decoding is especially useful in cross-domain settings where a generalist base LLM learns to invoke domain ex- pert models. On instruction-following, domain- specific QA, and reasoning tasks, we show that the performance of the joint system exceeds that of the individual models. Through qualitative analysis of the learned latent decisions, we show models trained with our method exhibit several interesting collaboration patterns, e.g., template-filling. 
    more » « less
  4. Large language models (LLMs) require alignment to effectively and safely follow user instructions. This process necessitates training an aligned version for every base model, resulting in significant computational overhead. In this work, we propose NUDGING, a simple, training-free algorithm that aligns any base model at inference time using a small aligned model. NUDGING is motivated by recent findings that alignment primarily alters the model’s behavior on a small subset of stylistic tokens (e.g., discourse markers). We find that base models are significantly more uncertain when generating these tokens. Building on this insight, NUDGING employs a small aligned model to generate nudging tokens to guide the base model’s output during decoding when the base model’s uncertainty is high, with only a minor additional inference overhead. We evaluate NUDGING across 3 model families on a diverse range of open-instruction tasks. Without any training, nudging a large base model with a 7×-14× smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. By operating at the token level, NUDGING enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-27b-chat outperforms Llama-2-70b-chat on various tasks. Overall, our work offers a modular and cost-efficient solution to LLM alignment. Our code and demo are available at: https://fywalter.github.io/nudging/. 
    more » « less
  5. Most of the work on interpretable machine learning has focused on designing either inherently interpretable models, which typically trade-off accuracy for interpretability, or post-hoc explanation systems, whose explanation quality can be unpredictable. Our method, ExpO, is a hybridization of these approaches that regularizes a model for explanation quality at training time. Importantly, these regularizers are differentiable, model agnostic, and require no domain knowledge to define. We demonstrate that post-hoc explanations for ExpO-regularized models have better explanation quality, as measured by the common fidelity and stability metrics. We verify that improving these metrics leads to significantly more useful explanations with a user study on a realistic task. 
    more » « less