skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sensor Localization Using Time of Arrival Measurements in a Multi-Media and Multi-Path Application of In-Situ Wireless Soil Sensing
The problem of localization of nodes of a wireless sensor network placed in different physical media (anchor nodes above ground and sensor nodes underground) is addressed in this article. We use time of arrival of signals transmitted between neighboring sensor nodes and between satellite nodes and sensor nodes as the ranging measurement. The localization problem is formulated as a parameter estimation of the joint distribution of the time of arrival values. The probability distribution of the time of arrival of a signal is derived based on rigorous statistical analysis and its parameters are expressed in terms of the location coordinates of the sensor nodes. Maximum likelihood estimates of the nodes’ location coordinates as parameters of the joint distribution of the various time of arrival variables in the network are computed. Sensitivity analysis to study the variation in the estimates with respect to error in measured soil complex permittivity and magnetic permeability is presented to validate the model and methodology.  more » « less
Award ID(s):
2004766 2141084
PAR ID:
10228415
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Inventions
Volume:
6
Issue:
1
ISSN:
2411-5134
Page Range / eLocation ID:
16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Localization of networked nodes is an essential problem in emerging applications, including first-responder navigation, automated manufacturing lines, vehicular and drone navigation, asset tracking, Internet of Things, and 5G communication networks. In this paper, we present Locate3D, a novel system for peer-to-peer node localization and orientation estimation in large networks. Unlike traditional range-only methods, Locate3D introduces angle-of-arrival (AoA) data as an added network topology constraint. The system solves three key challenges: it uses angles to reduce the number of measurements required by 4X and jointly uses range and angle data for location estimation. We develop a spanning-tree approach for fast location updates, and to ensure the output graphs are rigid and uniquely realizable, even in occluded or weakly connected areas. Locate3D cuts down latency by up to 75% without compromising accuracy, surpassing standard range-only solutions. It has a 0.86 meter median localization error for building-scale multi-floor networks (32 nodes, 0 anchors) and 12.09 meters for large-scale networks (100,000 nodes, 15 anchors). 
    more » « less
  2. Enabling reliable indoor localization can facilitate several new applications akin to how outdoor localization systems, such as GPS, have facilitated. Currently, a few key hurdles remain that prevent indoor localization from reaching the same stature. These hurdles include complicated deployment, tight time synchronization requirements from time difference of arrival protocols, and a lack of mechanism to allow a pan-building seamless solution. This work explores ways in which these key hurdles can be overcome to enable a more pervasive use of indoor localization. We propose a novel passive ranging scheme where clients overhear ongoing two-way ranging wireless communication between a few infrastructure nodes, and compute their own relative location without transmitting any signals (preserving user privacy). Our approach of performing two-way ranging between infrastructure nodes removes a crucial timing requirement in traditional time-difference-of-arrival methods thereby relaxing the synchronization requirements imposed by previous techniques. We use ultra-wideband wireless (UWB) radios that can easily penetrate building materials so that spanning an entire floor of a large building with just a few infrastructure nodes is possible. We build working prototypes, including the necessary hardware, and demonstrate the plug-and-play nature of our proposed solution. Our evaluation in three indoor spaces shows 1–2 meter-level localization accuracy with areas as large as 2241sq.m. We expect our explorations to re-trigger interest in novel applications for indoor spaces based on fine-grained indoor location knowledge. 
    more » « less
  3. Recovering multi-person 3D poses and shapes with absolute scales from a single RGB image is a challenging task due to the inherent depth and scale ambiguity from a single view. Current works on 3D pose and shape estimation tend to mainly focus on the estimation of the 3D joint locations relative to the root joint , usually defined as the one closest to the shape centroid, in case of humans defined as the pelvis joint. In this paper, we build upon an existing multi-person 3D mesh predictor network, ROMP, to create Absolute-ROMP. By adding absolute root joint localization in the camera coordinate frame, we are able to estimate multi-person 3D poses and shapes with absolute scales from a single RGB image. Such a single-shot approach allows the system to better learn and reason about the inter-person depth relationship, thus improving multi-person 3D estimation. In addition to this end to end network, we also train a CNN and transformer hybrid network, called TransFocal, to predict the f ocal length of the image’s camera. Absolute-ROMP estimates the 3D mesh coordinates of all persons in the image and their root joint locations normalized by the focal point. We then use TransFocal to obtain focal length and get absolute depth information of all joints in the camera coordinate frame. We evaluate Absolute-ROMP on the root joint localization and root-relative 3D pose estimation tasks on publicly available multi-person 3D pose datasets. We evaluate TransFocal on dataset created from the Pano360 dataset and both are applicable to in-the-wild images and videos, due to real time performance. 
    more » « less
  4. ABSTRACT In Smart City and Vehicle-to-Everything (V2X) systems, acquiring pedestrians’ accurate locations is crucial to traffic and pedestrian safety. Current systems adopt cameras and wireless sensors to estimate people’s locations via sensor fusion. Standard fusion algorithms, however, become inapplicable when multi-modal data is not associated. For example, pedestrians are out of the camera field of view, or data from the camera modality is missing. To address this challenge and produce more accurate location estimations for pedestrians, we propose a localization solution based on a Generative Adversarial Network (GAN) architecture. During training, it learns the underlying linkage between pedestrians’ camera-phone data correspondences. During inference, it generates refined position estimations based only on pedestrians’ phone data that consists of GPS, IMU, and FTM. Results show that our GAN produces 3D coordinates at 1 to 2 meters localization error across 5 different outdoor scenes. We further show that the proposed model supports self-learning. The generated coordinates can be associated with pedestrians’ bounding box coordinates to obtain additional camera-phone data correspondences. This allows automatic data collection during inference. Results show that after fine-tuning the GAN model on the expanded 
    more » « less
  5. Abstract—Joint communication an dsensing allows the utiliza- tion of common spectral resources for communication and local- ization, reducing the cost of deployment. By using fifth generation (5G) New Radio (NR)(i.e.,the 3rd Generation Partnership Project Radio Access Network for 5G) reference signals,conventionally used for communication,this paper shows sub-meter precision localization is possible at millimeter wave frequencies.We derive the geometric dilution of precision of a bistatic radar configura- tion, a theoretical metric that characterizes how the target location estimation error varies as a function of the bistatic geometry and measurement errors.We develop a 5GNR compliant software test bench to characterize the measurement errors when estimating the time difference of arrival and angle of arrival with5GNR waveforms.The test bench is further utilized to demonstrate the accuracy of target localization and velocity estimation in several indoor and outdoor bistatic and multistatic configurations and to show that on average,the bistatic cconfiguration can achieve a location accuracy of 10.0 cm over a bistatic range of 25m, which can be further improved by deploying a multistaticradar configuration. Index Terms—5G NR;Bistatic Radar;Multistatic Radar;ge- ometric dilution of precision (GDOP);3GPP;localization;posi- tioning; position location 
    more » « less