The dynamics and the structure of the solar corona are determined by its magnetic field. Measuring coronal magnetic fields is, however, extremely hard. The polarization of low-frequency radio emissions has long been recognized as one of the few effective observational probes of magnetic fields in the mid and high corona. However, the extreme intrinsic variability of this emission, the limited ability of most of the available existing instrumentation (until recently) to capture it, and the technical challenges involved have all contributed to its use being severely limited. The high dynamic-range spectropolarimetric snapshot imaging capability that is needed for radio coronal magnetography is now within reach. This has been enabled by the confluence of data from the Murchison Widefield Array (MWA), a Square Kilometre Array (SKA) precursor, and our unsupervised and robust polarization calibration and imaging software pipeline dedicated to the Sun—Polarimetry using the Automated Imaging Routine for Compact Arrays of the Radio Sun (P-AIRCARS). Here, we present the architecture and implementation details of P-AIRCARS. Although the present implementation of P-AIRCARS is tuned to the MWA, the algorithm itself can easily be adapted for future arrays, such as SKA1-Low. We hope and expect that P-AIRCARS will enable exciting new science with instruments like the MWA, and that it will encourage the wider use of radio imaging in the larger solar physics community.
more »
« less
Magnetism Science with the Square Kilometre Array
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and dark matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.
more »
« less
- Award ID(s):
- 1714205
- PAR ID:
- 10228490
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Galaxies
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2075-4434
- Page Range / eLocation ID:
- 53
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As of now the knowledge obtained on the extrasolar planetary magnetic fields is still small compared to what is known of the magnetic fields composed in our solar system. Planets with magnetic fields radiate in the radio band. Specifically, Auroral Kilometric radiation (AKR) originates from cyclotron emission of electrons orbiting the planet's magnetic field lines. In this project, we investigate the possibility of detecting the AKR emission of Earth-like exoplanets. We collect information on detected Earth-like exoplanets from NASA's exoplanet archive data. Assuming they have the same AKR emission as Earth, we calculate the detection probability of this emission using the Square Kilometric Array (SKA) radio telescope.more » « less
-
Synthesizing Observations and Theory to Understand Galactic Magnetic Fields: Progress and ChallengesConstraining dynamo theories of magnetic field origin by observation is indispensable but challenging, in part because the basic quantities measured by observers and predicted by modelers are different. We clarify these differences and sketch out ways to bridge the divide. Based on archival and previously unpublished data, we then compile various important properties of galactic magnetic fields for nearby spiral galaxies. We consistently compute strengths of total, ordered, and regular fields, pitch angles of ordered and regular fields, and we summarize the present knowledge on azimuthal modes, field parities, and the properties of non-axisymmetric spiral features called magnetic arms. We review related aspects of dynamo theory, with a focus on mean-field models and their predictions for large-scale magnetic fields in galactic discs and halos. Furthermore, we measure the velocity dispersion of H i gas in arm and inter-arm regions in three galaxies, M 51, M 74, and NGC 6946, since spiral modulation of the root-mean-square turbulent speed has been proposed as a driver of non-axisymmetry in large-scale dynamos. We find no evidence for such a modulation and place upper limits on its strength, helping to narrow down the list of mechanisms to explain magnetic arms. Successes and remaining challenges of dynamo models with respect to explaining observations are briefly summarized, and possible strategies are suggested. With new instruments like the Square Kilometre Array (SKA), large data sets of magnetic and non-magnetic properties from thousands of galaxies will become available, to be compared with theory.more » « less
-
Exoplanets' magnetic fields can help determine their interior structure, which is otherwise difficult to study. Additionally, the knowledge of exoplanets' magnetic fields can shed light on the stability of their atmospheres. Solar system planets with a magnetic field emit Auroral Kilometric Radiation (AKR) due to the cyclotron radiation of electrons orbiting the planet's magnetic field lines. In this project, we investigate the probability of detecting AKR emission of Jupiter-like exoplanets. To do so, we collect information on detected Jupiter-like exoplanets from NASA's exoplanet archive data. Assuming they have the same AKR emission as Jupiter, we calculate the detection probability of this emission using the Square Kilometer Array (SKA) radio telescope.more » « less
-
Abstract We present the Sydney Radio Star Catalogue, a new catalogue of stars detected at megahertz to gigahertz radio frequencies. It consists of 839 unique stars with 3 405 radio detections, more than doubling the previously known number of radio stars. We have included stars from large area searches for radio stars found using circular polarisation searches, cross-matching, variability searches, and proper motion searches as well as presenting hundreds of newly detected stars from our search of Australian SKA Pathfinder observations. The focus of this first version of the catalogue is on objects detected in surveys using SKA precursor and pathfinder instruments; however, we will expand this scope in future versions. The 839 objects in the Sydney Radio Star Catalogue are distributed across the whole sky and range from ultracool dwarfs to Wolf-Rayet stars. We demonstrate that the radio luminosities of cool dwarfs are lower than the radio luminosities of more evolved sub-giant and giant stars. We use X-ray detections of 530 radio stars by the eROSITA soft X-ray instrument onboard the Spectrum Roentgen Gamma spacecraft to show that almost all of the radio stars in the catalogue are over-luminous in the radio, indicating that the majority of stars at these radio frequencies are coherent radio emitters. The Sydney Radio Star Catalogue can be found in Vizier or athttps://radiostars.org.more » « less
An official website of the United States government

