Coronal magnetic fields are well known to be one of the crucial parameters defining coronal physics and space weather. However, measuring the global coronal magnetic fields remains challenging. The polarization properties of coronal radio emissions are sensitive to coronal magnetic fields. While they can prove to be useful probes of coronal and heliospheric magnetic fields, their usage has been limited by technical and algorithmic challenges. We present a robust algorithm for precise polarization calibration and imaging of low-radio frequency solar observations and demonstrate it on data from the Murchison Widefield Array, a Square Kilometre Array (SKA) precursor. This algorithm is based on the
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1714205
- Publication Date:
- NSF-PAR ID:
- 10228490
- Journal Name:
- Galaxies
- Volume:
- 8
- Issue:
- 3
- Page Range or eLocation-ID:
- 53
- ISSN:
- 2075-4434
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Measurement Equation framework, which forms the basis of all modern radio interferometric calibration and imaging. It delivers high-dynamic-range and high-fidelity full-Stokes solar radio images with instrumental polarization leakages <1%, on par with general astronomical radio imaging, and represents the state of the art. Opening up this rewarding, yet unexplored, phase space will enable multiple novel science investigations and offer considerable discovery potential. Examples include detection of low-level circular polarization from thermal coronal emission to estimate large-scale quiescent coronal fields; polarization of faint gyrosynchrotron emissions from coronal mass ejections for robust estimation of plasma parameters; and detection of themore » -
Synthesizing Observations and Theory to Understand Galactic Magnetic Fields: Progress and ChallengesConstraining dynamo theories of magnetic field origin by observation is indispensable but challenging, in part because the basic quantities measured by observers and predicted by modelers are different. We clarify these differences and sketch out ways to bridge the divide. Based on archival and previously unpublished data, we then compile various important properties of galactic magnetic fields for nearby spiral galaxies. We consistently compute strengths of total, ordered, and regular fields, pitch angles of ordered and regular fields, and we summarize the present knowledge on azimuthal modes, field parities, and the properties of non-axisymmetric spiral features called magnetic arms. We review related aspects of dynamo theory, with a focus on mean-field models and their predictions for large-scale magnetic fields in galactic discs and halos. Furthermore, we measure the velocity dispersion of H i gas in arm and inter-arm regions in three galaxies, M 51, M 74, and NGC 6946, since spiral modulation of the root-mean-square turbulent speed has been proposed as a driver of non-axisymmetry in large-scale dynamos. We find no evidence for such a modulation and place upper limits on its strength, helping to narrow down the list of mechanisms to explain magnetic arms. Successes and remaining challenges ofmore »
-
ABSTRACT The central molecular zone (CMZ) plays an essential role in regulating the nuclear ecosystem of our Galaxy. To get an insight into magnetic fields of the CMZ, we employ the gradient technique (GT), which is rooted in the anisotropy of magnetohydrodynamic turbulence. Our analysis is based on the data of multiple wavelengths, including molecular emission lines, radio 1.4 GHz continuum image, and Herschel $70\, {\mu }{\rm m}$ image, as well as ionized [Ne ii] and Paschen-alpha emissions. The results are compared with the observations of Planck 353 GHz and High-resolution Airborne Wideband Camera Plus (HWAC+) $53\, {\mu }{\rm m}$ polarized dust emissions. We map the magnetic fields orientation at multiple wavelength across the central molecular zone, including close-ups of the Radio Arc and Sagittarius A West regions, on multiscales from ∼0.1 pc to 10 pc. The magnetic fields towards the central molecular zone traced by the GT are globally compatible with the polarization measurements, accounting for the contribution from the galactic foreground and background. This correspondence suggests that the magnetic field and turbulence are dynamically crucial in the galactic center. We find that the magnetic fields associated with the Arched filaments and the thermal components of the Radio Arc are in good agree withmore »
-
Context. Standing and moving shocks in relativistic astrophysical jets are very promising sites for particle acceleration to large Lorentz factors and for the emission from the radio up to the γ -ray band. They are thought to be responsible for at least part of the observed variability in radio-loud active galactic nuclei. Aims. We aim to simulate the interactions of moving shock waves with standing recollimation shocks in structured and magnetized relativistic jets and to characterize the profiles of connected flares in the radio light curve. Methods. Using the relativistic magneto-hydrodynamic code MPI-AMRVAC and a radiative transfer code in post-processing, we explore the influence of the magnetic-field configuration and transverse stratification of an over-pressured jet on its morphology, on the moving shock dynamics, and on the emitted radio light curve. First, we investigate different large-scale magnetic fields with their effects on the standing shocks and on the stratified jet morphology. Secondly, we study the interaction of a moving shock wave with the standing shocks. We calculated the synthetic synchrotron maps and radio light curves and analyze the variability at two frequencies 1 and 15.3 GHz and for several observation angles. Finally, we compare the characteristics of our simulated light curvesmore »
-
Abstract We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535–571, which underwent a prolonged outburst beginning on 2017 September 2. We monitored MAXI J1535–571 with the Murchison Widefield Array (MWA) at frequencies from 119 to 186 MHz over six epochs from 2017 September 20 to 2017 October 14. The source was quasi-simultaneously observed over the frequency range 0.84–19 GHz by UTMOST (the Upgraded Molonglo Observatory Synthesis Telescope) the Australian Square Kilometre Array Pathfinder (ASKAP), the Australia Telescope Compact Array (ATCA), and the Australian Long Baseline Array (LBA). Using the LBA observations from 2017 September 23, we measured the source size to be $34\pm1$ mas. During the brightest radio flare on 2017 September 21, the source was detected down to 119 MHz by the MWA, and the radio spectrum indicates a turnover between 250 and 500 MHz, which is most likely due to synchrotron self-absorption (SSA). By fitting the radio spectrum with a SSA model and using the LBA size measurement, we determined various physical parameters of the jet knot (identified in ATCA data), including the jet opening angle ( $\phi_{\rm op} = 4.5\pm1.2^{\circ}$ ) and the magnetic field strengthmore »